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A B S T R A C T

Major advances in diagnostic technologies are offering unprecedented insight into the condition of the retina and
beyond ocular disease. Digital images providing millions of morphological datasets can fast and non-invasively
be analyzed in a comprehensive manner using artificial intelligence (AI). Methods based on machine learning
(ML) and particularly deep learning (DL) are able to identify, localize and quantify pathological features in
almost every macular and retinal disease. Convolutional neural networks thereby mimic the path of the human
brain for object recognition through learning of pathological features from training sets, supervised ML, or even
extrapolation from patterns recognized independently, unsupervised ML. The methods of AI-based retinal
analyses are diverse and differ widely in their applicability, interpretability and reliability in different datasets
and diseases. Fully automated AI-based systems have recently been approved for screening of diabetic retino-
pathy (DR). The overall potential of ML/DL includes screening, diagnostic grading as well as guidance of therapy
with automated detection of disease activity, recurrences, quantification of therapeutic effects and identification
of relevant targets for novel therapeutic approaches. Prediction and prognostic conclusions further expand the
potential benefit of AI in retina which will enable personalized health care as well as large scale management
and will empower the ophthalmologist to provide high quality diagnosis/therapy and successfully deal with the
complexity of 21st century ophthalmology.

1. Introduction

No field in ophthalmology has been scientifically and clinically
blessed as much as retina in recent years. Retinal disease is given in-
tensive and widespread attention with a common understanding that
the condition of the retina is among the leading causes of severe vision
loss and blindness on the global level. Age-related macular degenera-
tion (AMD) currently affects 170 million people world-wide
(Pennington and DeAngelis, 2016), while diabetic retinopathy (DR) is
recognized as a world-wide epidemic. A third of an estimated 285
million people with diabetes have signs of DR and one third of them
have vision-threatening DR (Lee et al., 2015). Furthermore, the num-
bers are increasing: it is anticipated that 288 million people will have
AMD by 2040 and the number with DR will triple by 2050. On the other
hand, therapeutic improvements in retina count among the major
break-throughs in modern medicine. The introduction of intravitreal
vascular endothelial growth factor (VEGF) inhibition in 2006 hugely
reduced legal blindness rates and achieved considerable improvements

in vision in neovascular AMD and diabetic macular edema (DME)
(Varma et al., 2015). However, the success story of anti-VEGF therapy
in clinical studies comes with the bitter pill of largely inferior outcomes
in the real-world setting (Mehta et al., 2018). This is mainly because of
delays in identifying disease onset and progressive course, as well as the
unpredictability of recurrence, which together derail long-term man-
agement, particularly in neovascular AMD, the most aggressive entity.
Moreover, numerous phase II/III clinical trials in the most prevalent
atrophic AMD type, which leads to irreversible loss of the central retina,
have been disappointing. Even the inhibition of complement factors,
believed to act as major drivers of geographic atrophy (GA), have failed
to halt disease progression and vision loss, leaving the question of valid
therapeutic targets and relevant biomarkers unanswered (Boyer et al.,
2017). Hence, retinologists are struggling with long-term visual decline
in large patient populations, health care providers face disproportionate
budget drains and researchers are disheartened by failed trials.

Optimism though springs from the evolution of innovative diag-
nostic modalities which have developed rapidly together with

https://doi.org/10.1016/j.preteyeres.2018.07.004
Received 30 May 2018; Received in revised form 24 July 2018; Accepted 31 July 2018

∗ Corresponding author.

1 Percentage of work contributed by each author in the production of the manuscript is as follows: Schmidt-Erfurth = 30%; Bogunovic = 25%; Sadeghipour =
15%; Gerendas = 15%; Waldstein = 15%.

E-mail address: ursula.schmidt-erfurth@meduniwien.ac.at (U. Schmidt-Erfurth).

Progress in Retinal and Eye Research 67 (2018) 1–29

Available online 01 August 2018
1350-9462/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/13509462
https://www.elsevier.com/locate/preteyeres
https://doi.org/10.1016/j.preteyeres.2018.07.004
https://doi.org/10.1016/j.preteyeres.2018.07.004
mailto:ursula.schmidt-erfurth@meduniwien.ac.at
https://doi.org/10.1016/j.preteyeres.2018.07.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.preteyeres.2018.07.004&domain=pdf


therapeutic advances. Optical coherence tomography (OCT), with its
non-invasive visualization of retinal structures in unprecedented re-
solution, is the most powerful in vivo diagnostic tool in modern med-
icine. Spectral domain (SD)-OCT is widely available and represents the
gold standard in diagnostic imaging in the management of the leading
macular diseases such as choroidal neovascularization (CNV) and DME
(Schmidt-Erfurth and Waldstein, 2016). A conventional 3D OCT image
is based on 20,000–52,000 A-scans per second offering a resolution of
5–7 μm (Fig. 1) (Adhi and Duker, 2013). The novel swept source OCT
technology has already arrived in clinical practice and provides even
faster scanning with up to 100,000–236,000 A-scans per second. It also
operates on longer wavelengths and allows a much faster and deeper
visualization, including assessment of the choroid. OCT offers the re-
tinologist around 60 million voxels per volume, thus providing ex-
tensive information about retinal morphology. Considering the routine
work-load of a busy ophthalmological practice, it would be almost
surrealistic to ask an ophthalmologist to scroll through a series of 250 B-
scans for each of the dozens of retina patients examined daily, realign
segmentation lines and integrate multimodal imaging sources. OCT
angiography, with its high-speed and efficient algorithms allowing
detection of blood flow, has made non-invasive high-resolution imaging
of retinal and choroidal vasculature available to ophthalmologists in
clinics and practices around the world (Spaide et al., 2017). Yet as
imaging technology becomes more sophisticated, the discrepancy be-
tween imaged details and clinical interpretation grows. Even a simple
marker such as central retinal thickness (CRT) does not correlate with
best-corrected visual acuity (BCVA) (Browning et al., 2007). The
amount of potentially relevant biomarkers is overwhelming, suggesting
a multitude of different disease origins and types (Gerendas et al., 2018;
Spaide, 2018). Currently, subclinical features can be visualized and
identified such as hyperreflective foci (HRF), a marker not visualized by
clinical ophthalmoscopy, but gaining increasing value in the prognosis
of intermediate AMD and the severity of DR (Curcio et al., 2017;
Fragiotta et al., 2018). The era of subclinical diagnoses has begun and a
novel approach to interpretation is required.

Understanding and managing retinal disease has become vastly
more complex due to the enormous accumulation of images and find-
ings as well as all the hypotheses being put forward. Every patient
appears as a “big data” challenge (Obermeyer and Lee, 2017). Ob-
viously, the new era of diagnostic and therapeutic, scientific and clin-
ical data manufacturing urgently requires intelligent tools to manage
them adequately, safely and efficiently.

Artificial intelligence (AI) has already demonstrated proof-of-

concept in medical fields such as radiology, pathology and derma-
tology, which have striking similarities to ophthalmology as they are
deeply rooted in diagnostic imaging, the most prominent application of
AI in healthcare (Fig. 2) (Jiang et al., 2017). The advantages of AI in
medicine are overwhelming. AI is particularly suitable for managing the
complexity of 21st-century ophthalmology: it can assist clinical practice
by using efficient algorithms to detect and “learn” features from large
volumes of imaging data, help to reduce diagnostic and therapeutic
errors and foster personalized medicine. In addition, AI can recognize
disease-specific patterns and correlate novel features to gain innovative
scientific insight. If ophthalmologists wish to retain control of their
professional future, they will have to embrace intelligent algorithms
and educate themselves to become knowledgeable in evaluating and
applying AI in a constructive manner.

1.1. What is AI?

Artificial intelligence (AI) is a branch of computer science that aims to
create intelligent machines. The term artificial intelligence was coined
by John McCarthy, who first organized a workshop in 1956 with the
goal “to proceed on the basis of the conjecture that every aspect of
learning or any other feature of intelligence can in principle be so
precisely described that a machine can be made to simulate it”. This so-
called Dartmouth workshop is now considered as the birth place of AI.
The branch of AI referred to as Machine Learning ̶ created by Arthur
Samuel in 1959 ̶ focuses on the learning feature of intelligence by de-
veloping algorithms that extract generalized principles from data.
These principles are represented as mathematical models that comprise
descriptive rules of the given data. In this way, machine learning ap-
proaches formed a contrast to the other automated approaches that
required the descriptive rules of the data to be defined by human ex-
perts in the field and then implemented in an automated system by
computer programmers.

AI is not new to medicine. The first successful automated systems for
healthcare were described as early as the 1970s. An early example was
a system called MYCIN developed at Stanford University (Buchanan and
Shortliffe, 1984). It was an expert system-based AI that was able to
recommend appropriate antibiotics using a knowledge base composed
of a large number of rules in the form of if-then statements. It never
reached clinical practice however, but not because of weakness in its
performance as it was reported to actually perform better than in-
fectious disease specialists (Yu et al., 1979).

These first healthcare attempts were based on an AI branch called
expert systems with the idea that knowledge engineers would encode the
decision-making ability of clinicians into a knowledge base represented
by a set of facts and rules that computers could execute algorithmically.
Even though expert systems were among the first successful forms of AI

Fig. 1. Spectral-domain OCT cross-section (B-scan) of the macula, showing a
wealth of detailed pathognomonic features with μm resolution over a three-
dimensional volume of macular tissue. High-resolution imaging allows to
quantify established clinical biomarkers as well as sub-clinical features not
detectable by ophthalmic examination such as hyperreflective foci, photo-
receptor alteration and feature quantification.

Fig. 2. Diagnostic imaging is currently the highest and most efficient applica-
tion of AI-based analyses and will likely further expand as imaging modalities
become advance and multi-modal. (Jiang et al., 2017).
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(Russell and Norvig, 1995) and could operate well in limited clinical
situations, the medical field and variability of pathologies proved to be
so broad and complex that encoding a set of rules that would contain all
the relevant clinical information was too difficult to do by hand. As a
consequence, the expert systems approach was largely superseded in
the 1990s by a machine learning branch of AI, where the “rules” would
be learned by algorithms directly from a set of examples instead of
being encoded by hand. Today, when we consider AI we almost ex-
clusively have machine learning in mind.

The classic machine learning approach requires that a set of bio-
markers or features be directly measured from the data (e.g., retinal
thickness measured from an OCT image). Then, based on a training set
of examples of features with known labels, e.g., category memberships,
a classifier learns to recognize the correct label from the newly seen
features. Once a few powerful classifiers have been developed, the ef-
fectiveness of such classic machine learning models mostly relies on the
discriminative power of the chosen features which underpin the clas-
sifier performance. Thus, in classic machine learning the task of a
knowledge engineer is replaced with a task of hand-engineering effec-
tive domain-specific features.

1.2. Deep learning and convolutional neural networks

A recurring theme in machine learning research is imitation of the
neural structure of the central nervous system by creating artificial
neural networks (ANNs), given that the brain is the only existing
working example of a highly capable pattern recognition system. An
ANN is a computing system based on a network of units called artificial
neurons organized into layers. Layers of neurons perform transforma-
tions of the signal as it travels from the input (first) layer to the output
(last) layer. Early ANNs from the 1990s quickly found their use in
medical applications as they were recognized as good classifiers where,
e.g., the input would be a set of relevant patient features and the output
would be a diagnosis. They were shown to be capable of performing at
the same level as an expert clinician in detecting myocardial infarction
in patients presenting with anterior chest pain at an emergency de-
partment (Baxt, 1991), for diagnosing renal cancer from ultrasound
(Maclin et al., 1991), or for screening of diabetic retinopathy based on
features extracted from a fundus image (Gardner et al., 1996).

Even though these early forms of an ANN were outperformed by
other statistical learning methods for a period of time, they were res-
urrected in 2012 when the new breed of deep neural networks (DNN)
were developed. A DNN is an ANN with multiple intermediate layers
positioned between the input and output layers, allowing each level to
learn to transform its input signal into a gradually more abstract and
higher-level representation, utilizing fewer artificial neurons than a
comparable shallow ANN, making them more efficient at learning. A
key benefit of DNNs is that their performance was shown to con-
tinuously improve with the size of the training dataset (Fig. 3). In ad-
dition, substantial advances in computational processing power sud-
denly allowed such DNNs to be trained and applied within a reasonable
timeframe. Thus, given enough data examples and computational
power, DNN easily exceeded classic machine learning methods on
standard AI benchmarks. This evolution started a new subfield of AI and
machine learning called deep learning (LeCun et al., 2015) dedicated to
exploring the capabilities of DNNs. The central idea is that a neural
network, instead of just acting as a classifier, can serve as the feature
extractor as well. Therefore, a single deep neural network performs
both tasks and can learn to jointly extract features that are suitable for a
given classification problem and to classify them. Such deep networks
allow training entirely end-to-end because instead of learning to re-
cognize an output category from hand-engineered features they learn to
recognize it from the input signal directly (Fig. 4). Thus, in deep
learning, the task of hand-engineering domain-specific features is re-
placed by one of designing reliable deep neural network architectures.

The deep learning architecture found to be most suitable for

imaging data is that of convolutional neural networks (CNNs) (LeCun
et al., 1998). CNNs encode connectivity pattern between neurons that
resembles the organization of the mammalian visual cortex. Such net-
works contain special type of layers which apply a mathematical fil-
tering operation known as convolution, which makes individual neuron
process data only for its receptive subfield and emulates its response to
visual stimuli. These filters act as special feature detectors and as the
input image is processed with successive convolutional layers of the
network, the filters in the process get stacked together creating pro-
gressively more descriptive and sophisticated feature detectors. During
training, these individual detectors are then being adjusted to detect
those specific image features that are needed to solve a particular image
recognition task. Trained with large annotated datasets, CNNs essen-
tially allowed computers to start recognizing visual patterns and are
primarily responsible for the recent resurgence and overwhelming in-
terest in AI.

A significant boost in the ability of computers to recognize image
content came through the ImageNet Large Scale Visual Recognition
Competition (Russakovsky et al., 2015), which has been run annually
since 2010. The goal was to automatically classify more than 1.2 mil-
lion natural images, photographs, into 1000 categories. By 2015, the
deep learning CNN models developed were reported to reach the
human level of ability at such a specific “task” of image identification
(He et al., 2015). This break-through marked a new era in the per-
ception of the role of computers for the modern world as it became
obvious that AI would be able to outperform human intelligence and
computers' capacities vastly exceed those of humans in multiple sci-
entific, medical and everyday-life tasks. In 2015, the journal Scientific
American therefore ranked AI among the “ten big advances that will
improve life, transform computing and maybe even save the planet”.
With deep learning networks operating like and better than the human
brain the walls fell and the paradigm-shift in AI became irreversible
(Scientific-American, 2015).

1.3. Success stories in the medical field

Deep learning-based AI has shown its abilities across multiple
medical domains. It shines particularly in well-defined clinical tasks
where most of the information necessary for the task is contained in the
data, represented as a 1D signal (e.g., electrocardiogram), 2D or 3D
medical imaging (e.g., color fundus photograph or optical coherence
tomography) (Litjens et al., 2017) or structured electronic medical re-
cord. In the following, we review some of the recent prominent AI
applications in medicine, overall where it has been shown to perform at
least on par with medical specialists.

Applications in dermatology, due to diagnoses being based mainly

Fig. 3. Illustration of the performance advantage of the deep learning models
over the classic machine learning ones. The difference becomes clear as the
amount of training data keeps increasing. Unlike the performance of classic
machine learning methods which tend to saturate with the amount of data, the
performance of deep learning keeps growing.
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on visual appearance, are especially well suited for AI. This was de-
monstrated by a study (Esteva et al., 2017) where the authors trained a
CNN to classify lesions from photographs of skin disease. The perfor-
mance of detecting malignant melanomas and carcinomas matched that
of as many as 21 board-certified dermatologists combined. In another
dermatological application, onychomycosis diagnosis, a CNN per-
formed equally to or better than a panel of dermatologists with various
skill levels doing the same assessment in a painstaking manual fashion
(Han et al., 2018).

Radiology is another medical field where AI is expected to com-
plement or substitute some of the visual recognition tasks performed by
physicians. Recently, a CNN trained to detect pneumonia-like features
or abnormalities on chest and musculoskeletal radiographs performed
on par with practicing radiologists, as reported in a preprint (Rajpurkar
et al., 2017b). In another application, a CNN trained to assess bone age
based on pediatric hand radiographs was able to estimate age with a
similar accuracy to that of a radiologist (Larson et al., 2018).

In oncology, mammography screening is expected to be supported
by AI in the future. The diagnostic accuracy of a CNN system was shown
in 2017 to be comparable to that of experienced radiologists (Becker
et al., 2017). CNNs can also be successfully trained to be as accurate as
pathologists at detecting lymph node metastases in tissue sections of
women with breast cancer (Ehteshami Bejnordi et al., 2017). Treatment
recommendations for breast cancer made by a commercial AI system
“Watson for Oncology” have been compared in a retrospective ob-
servational study with those made by oncologists at a cancer center in
India and the system showed an overall concordance of 93%, which
varied by the stage of cancer (80%–97%) and patient's age
(Somashekhar et al., 2018).

In ophthalmology, automated screening based on retinal images has
been a target for AI for some time (Abramoff et al., 2013; Abramoff
et al., 2010). Recently, a CNN was trained to screen DR and its per-
formance was comparable to that of a panel of ophthalmologists cer-
tified for the task (Gulshan et al., 2016). Similarly, a very high sensi-
tivity and specificity was achieved in evaluating retinal images from
large multiethnic cohorts of patients with diabetes (Ting et al., 2017).
DR screening using three different commercially available software
packages was not only found to be accurate, but also cost effective
(Tufail et al., 2017). A CNN applied to OCT was able to successfully
differentiate cases with advanced AMD or diabetic macular edema,
which require timely treatment, from less severe cases (Kermany et al.,
2018). The performance was equivalent to that of six ophthalmologists
who made similar referrals based on the same scans. Moreover, a CNN

has been trained on retinal fundus images to predict cardiovascular
health risk factors such as high blood pressure and performed as well as
the methods that require invasive blood tests to measure cholesterol
levels (Poplin et al., 2018).

Outside of the AI applications in the imaging domain, equal success
can be expected from classifying other types of signals as well. In car-
diology, a CNN was trained to map a sequence of electrocardiogram
samples to a sequence of rhythm classes and its performance in de-
tecting a wide range of heart arrhythmias was (reported in a preprint)
to be superior to that of board-certified cardiologists (Rajpurkar et al.,
2017a). Deep learning models were able to accurately predict patho-
logical events using a representation of patients' entire original elec-
tronic health records. Such records were successfully used to predict the
need for palliative care, in-hospital mortality and unplanned read-
mission (Avati et al., 2017; Rajkomar et al., 2018).

Evidence of success across such a range of medical domains and
applications shows that given enough training data and computing
power we can design deep learning systems that match or exceed
human capabilities at narrowly specified medical tasks. Thus, there is a
clear opportunity to develop AI-based automated systems to read
medical images (Obermeyer and Emanuel, 2016). However, the success
of these deep learning methods strongly depends on the availability of
large and curated datasets, which only became available recently due to
the proliferation of digital imaging and data bases in medicine. For
example, in the above mentioned dermatology application, 18 public
data sets were used and more than 100,000 training images, two orders
of magnitude larger than what was reported in the literature as used
before (Esteva et al., 2017). Radiographic studies relied on NIH Chest X-
Ray-14 datasets interpreting more than 100,000 frontal images from
over 30,000 patients (Wang et al., 2017b). In ophthalmology, AI for
multiethnic screening was trained on around 100,000 images, which is
a stark contrast to the early DR screening work in the 1990s using
classic machine learning training on only 300 images (Gardner et al.,
1996; Ting et al., 2017).

2. AI technology in retina

To understand and properly interpret AI-based diagnostic results,
the retina expert needs to become aware of the large spectrum of ma-
chine and deep learning methods which will be the bases of clinical
management decisions. Diagnostic decisions of the pre-AI era were
based on commonly accepted pathological clinical features and defi-
nitions of healthy versus diseased retina such as in the Early Treatment

Fig. 4. Illustration of the principal difference between the classic machine learning models and the deep learning ones. Instead of learning to classify an input image
from hand-engineered features deep learning models are learning to both extract features and classify from the input directly, hence allowing for fully “end-to-end”
learning.
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Diabetic Retinopathy study (ETDRS) or Age-Related Eye Disease Study
(AREDS) scores. AI methods are also based on feature discrimination.
However, the sensitivity and accuracy of referring to features as healthy
or pathological/present or absent often proceeds on a subclinical base
for biomarkers not seen ophthalmologically, or from integrated patterns
over large populations as opposed to an individual condition. Hence, AI
represents a major paradigm shift in retinal diagnosis which is unlike
any previous approach. The community has to understand the rules and
risks of the different methods to properly use the machine-based out-
puts in their daily management decisions and be aware of their relia-
bility. Otherwise, retinology will become dependent on a “black box,”
with all its inherent risks and errors, and detached from evidence-based
medicine.

2.1. Procedures in machine-learning

Ophthalmology is particularly well positioned to reap the benefits of
advances in AI. The clear media of cornea and lens offer easy and non-
invasive diagnostic access to important functional and morphological
units such as the retina and optic nerve. In practice, diagnoses has re-
lied heavily on the use of digital imaging, starting with 2D color fundus
photography (CFP) in the 1990s and then 3D OCT in the 2000s. Both
modalities allow non-invasive and fast high-resolution imaging of the
retina, including the retinal vasculature and the neurosensory layers.
Thus, imaging has become part of clinical routine and large imaging
datasets can be assembled readily. The growing number of images is
one of the main driving forces behind the different applications of AI in
the field of retina imaging.

Different approaches in machine learning are aimed at solving two
types of learning tasks: supervised and unsupervised learning. In su-
pervised learning, the task is to construct a mathematical model that
maps given input data to their desired output values, i.e. the patholo-
gical features are a priori known and well defined. For example, from a
diseased OCT volume as the input, the desired output would be the
annotation of the fluid in the retina. Given CFP as the input, the desired
output could be whether the retina is clinically healthy or diseased.
Machine learning algorithms are designed to learn the relation between
defined image features and the expert annotations supplied at an image
or pixel level as ground truth. The learning process starts from a
training phase, where the model is formed iteratively by the dataset
(Fig. 3). Once the training is completed, in a test phase, the learned
model can be used to make decisions about the output of new data
samples. As applying labels to the input data as ground truth for a
classification task is challenging and even infeasible in some applica-
tions, there are also variations of weakly supervised learning that can
deal with partly unlabeled data or noisy labels. On the other hand, in
unsupervised learning the given data are completely unknown and
unlabeled and the task is to create a mathematical model that describes
the structure of the input data de novo.

The application of AI, and in particular machine learning in retina
images, is dominated by supervised learning tasks. We identify three
principal use-case scenarios for such applications (Fig. 5):

Classification. To assign an image to different categories, e.g., by
disease type or disease stage. Typically used for automated diagnosis,
screening or staging.

Segmentation. To detect and delineate anatomical structures or le-
sions in an image for the purpose of measuring, e.g., shape or volume.
Typically used for automated quantification of imaging biomarkers.

Prediction. To predict future outcomes or to predict the value of
another measure, e.g., visual acuity, age or blood pressure. Typically
used for disease prognosis or structure-function correlation.

2.2. Evaluation of performance

In supervised learning, the performance of a learned model can be
evaluated based on its prediction accuracy on separate test data

samples which were not present in the training dataset. If the perfor-
mance of a model is strong on the training data but poor on the test
data, the model has learned very specific patterns and is referred to as
“overfitted” to the training data. By contrast, an underfitted model
performs poorly on both training and test data. A well-fitted model
performs accurately on the training data and generalizes well to the
unseen data samples, which serves as an important confirmation of the
outcome validity.

Different statistical measures are available to quantify the perfor-
mance of a learned model with respect to data. In a classification task
with positive and negative labels (e.g., result of a screening), sensitivity
measures how many positive samples were correctly identified and
specificity measures the proportion of correctly identified negative
samples. Higher sensitivity comes at the cost of lower specificity and
vice versa in many classification problems. The graphical plot of a re-
ceiver operating characteristic (ROC) curve is used to find a trade-off
between them. ROC curves make use of the fact that many classification
methods generate probabilities of assigning an input data sample to
each possible output label. By changing the probability threshold for a
classification decision, the proportion between the positive and nega-
tive label outputs change and, in this way, either the sensitivity or
specificity of the model increases. An ROC curve visualizes all possible
combinations of sensitivity and specificity of the model to choose from
for the desired application. However, in order to measure the overall
performance of a model, independent of a specific threshold and ap-
plication, the area under the ROC curve (AUC) is used. The value of
AUC lies between 0.5, which corresponds to a random guess, and 1.0,
which shows 100% of specificity and sensitivity. Such vocabulary as
ROC curve, and particularly AUC, represent important outcome end-
points in AI-based diagnosis and prognosis making.

2.3. Classification methods

The scenario targeted most by machine learning methods is image
classification, i.e., the task of visual recognition consisting of assigning
a particular category to an image or a volumetric scan. It is typically
used in retinal analysis for the purpose of automated screening, which
is an example of a binary classification: referable/non-referable or di-
agnosis, which is an example of a multi-class classification: type of
disease present or stage of disease.

Depending on the size of the dataset available and the level of in-
terpretability needed, there are currently two main approaches to ret-
inal image classification: deep learning and classic machine learning.
The first is the method of choice when large annotated datasets are
available and when the need for higher accuracy prevails over the need
for interpretability. The second is used when the annotated datasets are
of small size or when there is a strong need for model transparency and
interpretation of its performance.

2.3.1. Classic machine learning
In the classic machine learning paradigm, the focus is on creating a

step-wise pipeline where the first step consists of describing an image
with a set of hand-designed features. The discriminative feature set
obtained is then exploited in the next step by a classifier, typically in
the form of an ANN, or other statistical learning models called a support
vector machine (SVM) or random forest. The performance thus relies
mostly on how discriminative the features are and less on the cap-
abilities of the classifiers, which are in practice similarly powerful.
There are a few ways such features are created from an image as shown
next.

Visual descriptor-based. A powerful approach for describing image
content is using a bag-of-words model where a dictionary containing
representative visual words is first created. Based on this dictionary, an
image can then be characterized as features measuring the number of
times such visual words appear in an image. Using such an approach, a
good automated classification of different AMD stages from OCT of
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about 1000 patients has been achieved (Venhuizen et al., 2017). As
opposed to learning a visual dictionary, another approach relies on
using known effective descriptors of local image content. One such
powerful descriptor called the histogram of oriented gradients (HOG)
counts occurrences of local intensity changes in different portions of an
image. Such image representation was shown to be very successful in
detecting objects in natural scenes and was adapted for classification of
retinal OCT images (Srinivasan et al., 2014).

Segmentation-based. The availability of segmentation methods allows
extraction and delineation of structures of interest from the original
image. Then, descriptors can be applied on the segmented images to
obtain features that quantify imaging biomarkers or lesion character-
istics. Retinal layer segmentation methods allow thickness maps of
different layers to be created. The thickness maps can be further sum-
marized with a set of values by, e.g., computing a mean thickness over
spatial areas defined by cylinders of various radii centered at the fovea.
Such an approach was used to create a model to detect patients with
AMD from OCT scans using maps of retinal volume and abnormal ret-
inal pigment epithelium (RPE) drusen complex thickening and thinning
(Farsiu et al., 2014). Similarly, Liu et al. proposed glaucoma detection
from OCT based on retinal nerve fiber layer (RNFL) thickness values of
circumpapillary and macula regions (Liu et al., 2011b). In another
work, after optic disc detection and vessel segmentation in CFP, a set of
different features based upon the color, texture, vascular and disc
margin obscuration properties were extracted to capture possible
changes in the optic disc in an effort to detect papilledema (Fatima
et al., 2017). All these approaches highlight the accuracy of diagnostic
evaluation using machine learning.

2.3.2. Deep learning
The deep learning-based approach for retinal image classification is

dependent on employing and training a CNN classification model. The
classification scenario has a unique advantage because of substantial
prior research done by the deep learning community in the domain of
solving a related visual recognition challenge such as prompted by the
ImageNet. The ImageNet is a large visual database designed for use in
visual object recognition software research such as recognizing cats,
dogs, or human individuals based on consistent object labelling. As of
2016, over 14 million images had been manually annotated into more
than 20,000 different categories. This resulted in the availability of a
few off-the-shelf, effective image classification architectures, typically
coming from the past winners of the ImageNet challenge, known by the
names of AlexNet, Inception, VGGnet, ResNet, etc. Thus, reuse of such
CNN models, i.e., taking a known CNN architecture and initialize its

variables with the ones obtained from its training on the large ImageNet
dataset, has become common practice. Such a setting when the network
is first pretrained on a different, but related, dataset is known as transfer
learning. Alternatively, if a task-specific architecture is developed then
the network variables are initialized randomly and the training is per-
formed from scratch.

Transfer Learning. The idea behind transfer learning is to exploit
knowledge obtained by learning to solve a related task where the
training data is plentiful to allow quicker learning of the target task.
ImageNet is a typical example of where the visual recognition task is
used with abundant training data and is a very good model for re-
cognizing natural photographs. Consequently, it is considered to be a
good starting point for obtaining a model that performs well in re-
cognizing retinal images. The simplest setting consists of using an al-
ready trained CNN as a fixed feature extractor. In this setting, a well-
known successful CNN trained on ImageNet is typically used. Once
applied to the retinal dataset, another classifier is then learned to per-
form the classification from such CNN-encoded features. This approach
has been used to classify a central OCT B-scan into one of the four
categories, CNV, early AMD, DME or normal retina, using only a frac-
tion of data as would have been needed normally (Kermany et al.,
2018). A similar approach successfully detected neovascular AMD from
a conventional central OCT B-scan (Treder et al., 2018). Other re-
searchers trained a classifier using the extracted CNN feature vector to
classify fundus images into ten categories, normal retina and nine ret-
inal diseases, using an open database containing 400 images, only a tiny
fraction of the data that would normally be needed to reliably identify
morphological features de novo (Choi et al., 2017).

Instead of using a CNN as a fixed feature extractor, the weights of
the pretrained network can additionally be fine-tuned by continuing the
training process on a dataset from the target domain. An example is the
highly effective solution proposed for DR screening, where researchers
additionally fine-tuned their model data set using ≈100,000 CFP
images (Gulshan et al., 2016). Karri et al. fine-tuned their CNN to
classify an OCT B-scan into DME, dry AMD or no pathology (Karri et al.,
2017). However, fine-tuning is only successful if sufficiently large
training data are available from the target domain.

Training from scratch. A customized CNN for DR screening was
proposed and trained on 75,000 publicly available CFP images, where
an additional classifier was further employed on the CNN-derived fea-
tures to achieve the final diagnosis (Gargeya and Leng, 2017). Diag-
nosing AMD from CFP was proposed in the form of a custom CNN
trained on 130,000 AREDS images where the task was to distinguish the
disease-free or early AMD from the referable intermediate or advanced

Fig. 5. Machine learning approaches focus
on the learning feature of artificial in-
telligence. These and in particular deep
learning methods have been successfully
applied in different use-cases of retina ima-
ging: classification, segmentation and pre-
diction based on OCT and CFP. Image pro-
cessing methods do not belong the field of
AI but they have achieved comparable re-
sults, especially in CFP segmentation.
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AMD. In an effort to screen a multiethnic population, researchers used
almost 0.5 million images for training and validation of the task of
detecting referable DR, referable possible glaucoma or referable AMD
(Ting et al., 2017). Another model for grading of DR from CFP was
proposed where one CNN was used for automated staging and another
to provide prognosis and suggest treatment (Takahashi et al., 2017).
Detecting rhegmatogenous retinal detachment from 2D ultra-widefield
fundus images using a custom CNN has also been proposed (Ohsugi
et al., 2017). Detection of referable AMD from CFP images was trained
and evaluated on 130,000 stereo images from 4613 patients forming
the AREDS data set (Burlina et al., 2017). Researchers developed a CNN
trained on more than 100,000 of the central eleven B-scans from an
OCT that was able to distinguish normal from AMD retinas (Lee et al.,
2017a).

A successful hybrid combination of deep learning and classic ma-
chine learning was proposed for automated screening of DR from CFP in
2016 (Abramoff et al., 2016). First a set of CNN-based detectors were
applied to find the optic disc and the fovea as well as lesions such as
hemorrhages, exudates and neovascularization. Features formed from
these detectors were then merged and supplied to the classification
stage that outputs a clinical likelihood of referable DR.

2.4. Segmentation methods

In computer science, image segmentation refers to the process of di-
viding an image into segments or outlined groups of pixels that re-
present a meaningful entity. Image segmentation has a wide spectrum
of applications from object detection and face recognition to deli-
neating anatomical structures in medical images. The rise of automated
segmentation methods in retinal imaging first happened in the early
2000s, starting with segmentation targets on fundus images displaying
features such as retinal blood vessels, microaneurysms, optic disc:cup
ratio and drusen, followed by the segmentation of hemorrhage, exu-
dates and detection of the fovea. In the 2010s, 3D OCT devices were
already wide-spread and a new body of literature on automated seg-
mentation of retinal structure from OCT volumes appeared. OCT of-
fered insights into the retinal layers and the neurosensory layers were
the primary and first segmentation targets in OCT images. Later, with
the development of deep learning, more successful segmentations were
reported for intra- and subretinal fluid (IRF and SRF), and more re-
cently for drusen, pigment epithelial detachment (PED), geographic
atrophy (GA), hyperreflective foci (HRF), subretinal hyperreflective
material (SHRM) and photoreceptors. Fig. 6 shows that the perfor-
mance of the recent automated segmentations is comparable to that of
human graders.

AI approaches, and in particular machine learning methods, are not
essential for automated segmentation. Many structures in fundus and
OCT images can be segmented by using image processing methods that
solely apply a set of mathematical functions on the content of an image.
By contrast, machine learning methods precisely learn those functions
from annotated images. Most of the methods proposed for automated
localizing and segmenting the optic disc and fovea on fundus images
have not applied machine-learning methods and thus do not count as AI
applications in retina imaging. For instance, Kao et al. localized the
optic disc by applying functions that highlight the pixels with a yel-
lowish hue, while the fovea is detected from a green hue of the pixels
(Kao et al., 2014). In addition, the disc-fovea axis is determined guiding
the foveal position towards the biologically plausible region. Such
image processing methods are suitable for segmenting targets with the
aid of a well-defined shape, color, texture as well as biological con-
straints. Most of the methods proposed for automated layer segmenta-
tion in OCT images do not apply machine learning methods either and
the methods applied rely on constraints such as the ordering and
thickness of the layers. Song et al. showed that when biological shape
and context priors are used in a graph-based method to segment OCT
layers, the segmentation error becomes significantly smaller than the

corresponding inter-reader variability (Song et al., 2013). Miri et al.
proposed a method to segment Bruch's membrane of patients with
glaucoma using both machine learning techniques and a graph-based
optimization method (Miri et al., 2017). Graphs are mathematical tools
that can be seen as a network of nodes and edges that connect these
nodes. For the purpose of layer segmentation, the biological distance
constraints can then be encoded in the edges between nodes and in this
way arrange for the most plausible positioning of the nodes. Non-AI
methods have also been successfully applied to segment PED in OCT
(Shi et al., 2015), hard and soft exudates (Kaur and Mittal, 2018), or
hemorrhage and microaneurysms in CFP (Figueiredo et al., 2015).

In contrast to these image processing techniques, machine learning
methods are not designed to work with predefined rules. This makes
them more powerful in segmenting less structured targets such as cy-
stoid fluid within the retina. The classic machine learning approaches
work with numerical features that need to be extracted from given
images. Features such as the relative position to a biological reference
or the relative contrast of each pixel to its neighbors provide helpful
information for a machine learning method to learn decision rules,
whether a pixel belongs to the target segment or not. The more modern
end-to-end deep learning methods work rather with raw images and do
not need to be provided with such prior computed features because
these are extracted implicitly during learning.

2.4.1. Segmentation in classic machine learning
Since the 2000s, classic machine learning methods such as SVMs,

Bayesian approaches and random forest (RF) have been massively ap-
plied to retina-related tasks. Each of these methods has its own
strengths and weaknesses that make each of them more suitable for
specific research questions and segmentation targets. Researchers and
clinicians need to recognize these strengths and weaknesses to be able
to make proper evaluations.

Segmentation is defined as classification of each pixel by asking
questions about features such as its position and color individually and
in relation to the neighboring pixels. In classic machine learning, these
features are extracted from the images in a pre-processing step before
applying the learning method. Random forest approaches build deci-
sion trees based on the features extracted to classify each pixel.
Applications of random forest in CFP have reached performances
comparable to manual grading of drusen (van Grinsven et al., 2013),
pseudodrusen (van Grinsven et al., 2015), exudates (Liu et al., 2011a)
and geographic atrophy (Feeny et al., 2015). In all these applications,
the classification relies mostly on the color and texture features. Lang
et al. applied RF to segment eight layers in OCT volumes, mainly based
on the position of each pixel in the volume and its gray value (Lang
et al., 2013).

Features extracted solely at the pixel level do not take the contextual
information into account. Thus, different techniques are applied to in-
corporate the neighboring pixels in the classification decision. For in-
stance, Wang et al. proposed an RF method to distinguish between
preserved and disturbed ellipsoid zones in the en-face view of OCTs
(Wang et al., 2018). The decisions per pixel were made not only based
on the intensity of each isolated pixel but also on the functions of the
pixel value relative to the neighboring pixels, an image processing
technique known as Kernel operation. Montuoro et al. proposed the
auto-context loop for a joint segmentation of retina layers and fluid
(Montuoro et al., 2017). The idea is to use the probabilistic segmen-
tation result (which carries the contextual information) as input and
repeat the classification process. Another technique of context-sensitive
segmentation uses image patches, which are random samples of small
regions of the image. For instance, Ren et al. extracted patches with and
without drusen from CFP images (Ren et al., 2018). These were then
used to learn features present in drusen segments and absent in back-
ground segments. An SVM applied to segment drusen based on both
learned features from patches and hand-crafted features from pixels
achieved a relatively high accuracy in public datasets. The strength of
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SVMs is that the learning method can mathematically set boundaries on
the error rate and avoid over-fitting to the training data, which is a
typical problem in machine learning applications. In CFP, different SVM
approaches have reliably segmented different targets such as micro-
aneurysms and vessels. Veiga et al. proposed using an SVM in two
classification phases: first the SVM classifies based on the pixel-level
features and second the SVM decides at the more contextual level,
based on the groups of candidate pixels from the first SVM (Veiga et al.,
2017). Relan et al. also applied an SVM to automatically segment and
classify vessels on CFP images into arterioles and venules (Relan et al.,
2014). The features were computed as the mean of pixel color values in
a neighborhood around each pixel for a context-sensitive segmentation.

2.4.2. Segmentation in deep learning
The number of deep learning applications in retinal segmentation

tasks has increased in the last years. Deep learning has not only
achieved comparable or better results to the previous methods of classic
machine learning for any segmentation target but has also been applied
to segment new targets such as SHRM and GA in OCT (Ji et al., 2018;
Lee et al., 2018b). Al-Bander et al. applied deep CNNs to detect both the
fovea and optic disc on color fundus images (Al-Bander et al., 2018). In

contrast to the classic machine learning applications, this CNN method
works directly on the raw images and does not require any prior
knowledge about the morphology and position of the fovea and optic
disc. Another example of CNN applications on fundus images is the
segmentation and classification of arterioles and venules (Welikala
et al., 2017). A similar CNN architecture has been used to segment the
optical nerve head in OCT scans (Devalla et al., 2018). Both these
methods take the raw image as input and process it into the desired
labels per pixel in a long (deep) sequence of mathematical operations.

Schlegl et al. proposed an encoder-decoder architecture to segment
both sub- and intraretinal fluid in OCT images of patients with neuro-
vascular AMD, DME or retinal vein occlusion (RVO) (Schlegl et al.,
2018b). The encoder part of the network maps the given B-scan of an
OCT volume to an abstract representation with lower resolution than
the image. The subsequent decoder part of the network then generates
the segmentation mask (i.e. the delineated annotation) in the original
resolution of the input image. By training such a model on a given set of
annotated B-scan samples, the encoder part of the model learns to keep
the most important information (or implicitly extracted features) from
different samples so that the decoder part can generate annotations
solely from this information.

Fig. 6. Recent advances in the segmentation of CFP and OCT show comparable performance between human graders and machine learning algorithms. In this
context, for many segmentation targets the difference between two graders is comparable to each of them relative to the automated segmentation. [Modified after
Bogunovic et al., 2017b).
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Recently, other deep learning architectures have been proposed that
use a composition of neuronal networks different from the mere se-
quential processing. One of the most successful architectures in medical
image processing and also in retina imaging is U-Net (Ronneberger
et al., 2015). This architecture arranges the neuronal layers in a U form.
Additional connections between encoder and decoder layers allow
images to be processed at different levels of abstraction. U-Net archi-
tecture has been successfully applied for segmentation in OCT scans
such as of drusen (Zadeh et al., 2017), intraretinal fluid (Venhuizen
et al., 2018), macular edema (Lee et al., 2017b), retinal layers (He et al.,
2018) and hyperreflective foci (Schlegl et al., 2018a). Roy et al. pro-
posed ReLayNet, a deep learning network architecture inspired by U-
Net with a modified connection between the layers for segmentation
(Roy et al., 2017). ReLayNet achieved accurate results in segmentation
of seven retina layers together with fluid in pathological OCT scans.
More recent deep learning architectures have segmented some less
explored biomarkers of OCTs. Lee et al. proposed a U-Net architecture
that simultaneously segments several relevant lesions of neovascular
AMD (IRF, SRF, PED, and SHRM) on OCT scans, with a sensitivity of at
least 0.97 (Lee et al., 2018b). In summary, a large spectrum of deep
learning methods has to be distinguished and each method performs
differently.

2.4.3. Bayesian approaches
Bayesian methods are a family of probabilistic methods with the

advantage that the mathematical model learned can be represented as a
graph. This makes the model structure interpretable for humans, in
contrast to SVMs or neuronal networks which represent the learned
classification model in a black-box manner. Kharghanian et al. reported
comparable vessel segmentation accuracy in CFP images when applying
an SVM versus a Bayesian probabilistic method (Kharghanian and
Ahmadyfard, 2012). Zheng et al. proposed a hybrid approach which
combines Bayesian with graph-based methods to segment retinal layers
in OCT (Zheng et al., 2013). This work also applied a meta-learning
technique called adaptive boosting or AdaBoost that combines a set of
weak classifiers with a unified boosted and strong classifier. This
technique has been successfully applied to segment PED in OCT images
or to segment vessels in color fundus images (Memari et al., 2017; Sun
et al., 2016). Another similar technique is called ensemble learning, in
which the final classification decision is made based on the votes of an
ensemble of simple classifiers. For instance, Harangi et al. showed that
in segmentation of exudates in CFP, an approach that ensembles a set of
simple and weak Bayesian classifiers outperforms the state-of-the-art
methods that apply a single but strong classifier (Harangi and Hajdu,
2014).

Besides the aforementioned supervised classification methods, suc-
cessful application of unsupervised clustering methods has been re-
ported for different segmentation targets. Methods such as k-nearest-
neighbor (KNN) do not need any annotated data as ground truth and
thus the extracted features from the images need to be descriptive en-
ough for the pixels belonging to the segmentation target to have a si-
milar range of values. KNNs have been successfully applied to segment
vessels (GeethaRamani and Balasubramanian, 2018), exudates (Allam
et al., 2017) and microaneurysms in CFP (Walter et al., 2007).

2.5. Prediction of clinical outcomes

Similar to a classification scenario, AI can be applied to predict
completely different attributes of the patient or the future outcome of a
treatment from an image. Poplin et al. using the retina as a window to
the body, successfully trained a CNN on data from 284,335 patients to
“guess” age, sex and systolic blood pressure from a CFP (Poplin et al.,
2018). Of note, this work was published as a non-peer reviewed pre-
print. The task was achieved by training for multiple predictions si-
multaneously, referred to as multi-task learning. Having to predict
multiple attributes simultaneously was shown to benefit the learning
process as by sharing representations between related tasks the model is
able to generalize better on the original task of interest. Prahs et al. used
a total of 183,402 retinal OCT B-scans to train a CNN to predict from a
central B-scan whether an anti-VEGF injection would be given in the
following 21 days to a patient with neovascular AMD (Prahs et al.,
2018). Longitudinal datasets are often needed in addition to make
predictions because not only the current state of the retina but also its
recent morphological development and change over time has to be
observed (Figs. 7 and 8).

Classic Machine Learning. Prediction of disease recurrence from
longitudinal OCT in patients with RVO after anti-VEGF initiation has
been proposed (Vogl et al., 2017b). The classifier was trained on 247
patients from spatio-temporal features measuring local retinal thickness
values and their change during the first three monthly visits. Prediction
of visual acuity after a period of anti-VEGF treatment from a set of
spatio-temporal OCT features and clinical biomarkers was proposed for
neovascular AMD (Schmidt-Erfurth et al., 2018a), DME (Gerendas
et al., 2017) and RVO (Vogl et al., 2017a). There, the OCT biomarkers
corresponding to the retinal layer thicknesses, volume and area covered
by the retinal fluid were spatially described by their mean ETDRS grid
values. Similarly, Bogunovic et al. proposed prediction of anti-VEGF
treatment requirements in the following two years from a set of spatio-
temporal OCT biomarkers obtained during the initiation phase and
showed that the automated prediction performance was comparable to

Fig. 7. Prediction of individual treatment requirements during as-needed anti-VEGF therapy. AI models are trained to utilize data from the common loading dose to
predict individual treatment needs during long-term follow-up. The currently available methods achieve an accuracy of about 70%–80%, which is superior to human
performance. (Schmidt-Erfurth et al., 2018a).

U. Schmidt-Erfurth et al. Progress in Retinal and Eye Research 67 (2018) 1–29

9



or even better than that of a clinician (Bogunovic et al., 2017b).
Predictions can also be made for a local region of the retina only.

Niu et al. presented prediction of GA growth on OCT (Niu et al., 2016).
First, the GA area was identified. Then, the surrounding en-face pixels
and their axial scan properties (e.g. mean reflectivity) and segmenta-
tion-based properties (e.g. drusen height and the presence of patholo-
gies such as reticular pseudodrusen or loss of photoreceptors), were
used to train a classifier to predict for each pixel whether it would be
affected by GA at the next follow-up visit (Fig. 9). A similar approach
was used for predicting the regression of individual drusen from OCT
biomarkers in eyes with early/intermediate AMD (Bogunovic et al.,
2017a) (Fig. 10). There, confluent drusen were first partitioned into
individual ones and prediction for each druse was performed in-
dependently from a set of spatio-temporal features describing drusen
morphology, reflectivity and their surrounding layers. In glaucoma,
vision is traditionally measured by Humphrey 24–2 visual field sensi-
tivity thresholds, which is subjective and time-consuming. Bogunovic
et al. and Guo et al. instead regressed local visual sensitivity from a
sequence of retinal RNFL and GCL thickness sector values following a
spatial connectivity model of optical nerve fibers from a wide-field OCT
protocol (Bogunovic et al., 2014; Guo et al., 2017).

Survival analysis. The task of predicting the time to a future “event”
relies on survival models, where the retina is considered to have “sur-
vived” until the event occurs (Fig. 11). Such models estimate a risk of

an event occurring and have to specifically account for the censoring
phenomenon, i.e., the fact that only some retinas experience the event
for the duration of the study or are lost to follow-up. The Cox propor-
tional hazards (CPH) model is the most commonly used model for
survival data and effectively accounts for different individual intervals
and censoring. In a study by Chiu et al. the event was defined as the
occurrence of the first incidence of advanced AMD in an eye (Chiu
et al., 2014). The authors built an eye-specific predictive model for
developing advanced AMD from CFP images of 4507 participants with
AREDS. The authors used the baseline predictors, age, sex, education
level, race and smoking status, and the presence of pigmentary changes,
soft drusen, and maximum drusen size to devise and validate a macular
risk scoring system. A set of OCT measurements describing outer retina
and drusen and their change during follow-up was used to build a
predictive model of the onset of neovascular AMD (de Sisternes et al.,
2014). A longitudinal dataset of five consecutive follow-up visits was
used to predict the risk of conversion to neovascular AMD or GA from a
set of quantitative spatio-temporal OCT imaging biomarkers (Schmidt-
Erfurth et al., 2018b), as shown in Fig. 12.

2.6. Alternative scenarios

In addition to the three main scenarios already covered, deep
learning combined with big training datasets allowed development of

Fig. 8. Extraction of imaging biomarkers to allow prediction of visual acuity outcomes. The OCT images acquired during the loading phase were analyzed auto-
matically by deep learning and graph cut tools, yielding spatially resolved measurements of intraretinal fluid, subretinal fluid, pigment epithelial detachment as well
as retinal thickness, among other markers. The obtained variables were fed into the AI modelling database. (Niu et al., 2016).
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Fig. 9. Prediction of GA growth over time using machine learning. An example of a GA lesion which grows continuously over time is shown. The AI algorithm
provides a probability map for future growth (right column). The accuracy of the algorithm is illustrated in the center column. This study was successful in
forecasting the future development of GA lesions, although the results were not compared against a benchmark (i.e. assuming linear growth in all directions by the
known growth rates). (Bogunovic et al., 2017a).

Fig. 10. Prediction of drusen growth and drusen regression using AI tools. Three example patients are provided (rows 1–3). All patients experienced drusen
regression, an important hallmark of AMD progression at Year 1 compared to baseline (“Gold standard”). The AI method achieved an 80% performance in predicting
the future time and location of drusen regression (“Prediction”). [Modified after de Sisternes et al., 2014].
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applications that had not been considered previously. Two typical such
applications are enhancement or restoration of already acquired retinal
images and synthesizing retinal images of a different modality.

Image enhancement. An example is a deep learning method for re-
moving blurring artifacts from adaptive optics (AO) images (Fei et al.,
2017). The method learned to map between the blurred and restored
retinal images in an end-to-end fashion. The mapping was represented
as a deep convolutional neural network that was trained to output high-
quality images from blurry inputs. The CNN was trained on 500,000
retinal image pairs with simulated optical aberrations of the eye.

Image synthesis. Lee et al. showed how to train a CNN to generate
OCT angiography-like en-face images from a structural OCT image
alone (Lee et al., 2018a). A total of 401,098 cross-sectional pairs of
structural and corresponding angiography OCT images from 873 vol
were used as a training set. The model was able to learn and enhance

the weak signal patterns in structural OCT that correspond to the vas-
cular structures using the corresponding OCT angiography image as a
guide. This trained model was able to significantly outperform clin-
icians in detecting vascular structures on structural OCT. However, it
must be acknowledged that AI cannot uncover information that is not
present in an image, as for instance flow information from structural
OCT. Nevertheless, AI is able to use cues that human observers cannot
routinely consider or find difficult to identify: for example, hallmarks of
the retinal vasculature on OCT sections, which are well visible but often
not considered systematically by physicians.

Anomaly detection. Deep learning can also be applied in an un-
supervised way to discover anomalies in image data. For this purpose,
the appearance and variability of normal images of healthy individuals
are learned. If the AI system is then presented with an image containing
disease features, these features can be recognized automatically

Fig. 11. AI to predict the risk of AMD conversion on a patient level. From a set of quantitative features extracted from drusen, the progression risk of advanced AMD
onset could be successfully determined. The AI system assigns each patient with a hazard ratio; the allocation was highly accurate as shown in the Kaplan Meier Plot
on the right. [Modified after Schmidt-Erfurth et al., 2018b].

Fig. 12. AI may not only predict and differentiate a priori the development of CNV and/or GA in AMD eyes (left), but also provides insight into the pathophysiologic
fingerprint of AMD biomarkers (right). While the development of CNV is almost exclusively driven by drusen-associated changes, the risk of GA is closely related to
(atrophic) changes in the outer neurosensory retina, hyperreflective foci and age.
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because they appear as different from the learned healthy ones. Thus,
pathological features can be identified without defining them a priori.
Anomaly detection using unsupervised learning widely opens the hor-
izon for an unbiased discovery of hitherto unknown biomarkers. The
markers discovered can then be analyzed further in unsupervised
cluster analyses to reveal typical pathophysiological patterns common
to anomalies, i.e. defined pathological features. Successful applications
of unsupervised AI systems using OCT images were recently presented
by Seeböck and Schlegl (Schlegl et al., 2017; Seeboeck et al., 2016).

2.7. Interpretability

Having AI perform at an expert level is often insufficient if it op-
erates as a black-box model, i.e., without information on how the AI
model reached its decision. In classification scenarios, real-word trust in
AI's performance and detection of possible model biases is built when
physicians understand which discriminative features were used in the
decision-making process. In prediction scenarios, we are interested in
learning from AI by understanding the role of individual predictive
factors and to advance our clinical insight of the underlying patho-
physiology beyond conventional knowledge.

Classic machine learning. In classic machine learning, as we are
building a pipeline of individual components, each stage is hand-de-
signed and hence more interpretable. When a linear predictive model is
used, weights associated with each feature often serve as a surrogate
measure of its importance. This has been done to identify risk factors for
conversion to advanced AMD or understand what separates anti-VEGF
responders from non-responders (Bogunovic et al., 2017a; de Sisternes
et al., 2014; Schmidt-Erfurth et al., 2018b; Vogl et al., 2017b). In a non-
linear random forest classifier, the individual feature importance relies
on permuting the values of a feature and measuring how much such
permutation decreased the prediction accuracy of the model. Important
features can then be detected as those where the permutation decreases
the prediction accuracy most. This has been performed to understand
the prediction of GA progression (Niu et al., 2016), find predictive
features of treatment requirements in anti-VEGF therapy and identify
predictive factors for BCVA outcomes of intravitreal anti-VEGF or
conversion to late AMD Fig. 12) (Bogunovic et al., 2017b; Schmidt-
Erfurth et al., 2018a, 2018b).

Deep learning. With the growing success of neural networks, there is
a corresponding need to be able to explain their decision base.
However, we have to accept that deep models use greater abstractions
and tighter integration at the cost of lower interpretability. The most
prevalent trend in the field of neural network interpretability is to study
what part of an example image is responsible for the network activating
in a particular way (e.g., giving a positive or negative diagnosis). This is
typically represented in the form of an image heatmap indicating which
local morphology changes would modify the network predictions. The
most common and simplest approach is to perform the so-called oc-
clusion test (Zeiler and Fergus, 2014) applied for AMD detection on
OCT (Kermany et al., 2018; Lee et al., 2017a). To identify the areas in
the image contributing most to the neural network's decision, a blank
box is moved across all positions in the image and the respective output
class probability recorded. The highest drop in the class probability will
represent the region of interest with the highest importance. Recently, a
convolutional visualization layer was implanted at the end of the net-
work to highlight prognostic regions of the fundus for DR diagnosis
(Fig. 13) (Gargeya and Leng, 2017). Class saliency maps (Simonyan and
Zisserman, 2014) were used (Poplin et al., 2018) to highlight parts of
the fundus image which were the most discriminative for the CNN when
predicting individual sex, age and blood pressure (Fig. 14). This ap-
proach greatly facilitates clinical understanding.

3. Clinical applications of AI in retinal disease

In the following section, we identify clinical scenarios that are

accessible by AI applications, and summarize the current state-of-the-
art in AI research in each scenario. This includes automated detection
and quantification of retinal lesions or features, automated screening
for retinal disease, AI-based diagnostic grading as well as clinical de-
cision support in retinal therapy and prognostic disease models.

3.1. Automated detection and quantification of features

The most common application of AI methods in retina is its use for
detection of disease-related features on CFP images. An important first
step for evaluating a CFP image for automated analysis is to identify if
the orientation of the image is adequate for the automated system to
analyze the retinal condition. The retinal landmarks mainly used for
this task are the large retinal vessels and optic disc and sometimes also
the foveal location because these can be found equally in every fundus
image. Fig. 15 shows examples of such orientational key structures
(Moccia et al., 2018; Molina-Casado et al., 2017). These landmarks
allow an algorithm to create a common space where every image re-
ceived can be brought into the correct context – as the human observer
does when performing a slit-lamp or ophthalmoscopic examination.

In OCT, the detection of the fovea is of great importance as it can
also serve for orientation, particularly in macular disease (Liefers et al.,
2017). The spatial context allows clinical conclusions: a structure in the
perifoveal area is most likely less clinically relevant, for example, than a
pathological alteration directly in the center of the fovea.

3.1.1. Single feature detection versus entire image classification
The ETDRS classification system has been broadly used for decades

both in clinical classification and in the context of randomized clinical
trials. It is based on the detection of retinal markers seen by slit-lamp
examination or on CFP. Accordingly, most work on lesion detection in
CFP has been published in DR. Microaneurysms (Wang et al., 2017a),
hemorrhage (Fig. 15) (van Grinsven et al., 2016) and hard exudates
(García et al., 2009a; Yu et al., 2017) are the most relevant features but
detection of blood vessels and their alterations, e.g., venous beading or
intraretinal microvascular abnormalities (IRMA), is also important.
Good image quality is vital, especially for small features, as poor quality
or the wrong field of view can lead to feature omission (Wang et al.,
2017a), comparable with slit-lamp examination when the ability to
recognize the retinal fundus precludes the diagnostic grading of DR
according to ETDRS guidelines.

Wang et al. showed in the “Retinopathy Online Challenge” that their
approach detected microaneurysms better than other approaches, with
an average score of 0.464 (Wang et al., 2017a). However, there seems
to be room for improvement, considering that mild DR, for example,
presents with microaneurysms only in an otherwise healthy retina. The
distinction between mild and no DR is also the hardest for a clinician as
single microaneurysms may be easily missed. Other clinically more
distinctly visible structures show superior results for automated feature
detection. The sensitivity and specificity of detecting a hemorrhage was
79% and rose to 92% when the task was to identify images where he-
morrhage was present (van Grinsven et al., 2016). This compares to the
clinician whose task would be to state “yes, there is hemorrhage” as
opposed to “there is hemorrhage in the superior upper quadrant of the
retina,” which is certainly a more difficult task. This example highlights
the fact – clinically and automated – that it is in general easier for a
clinician/algorithm to make a correct decision on an entire image than
solely on presentation of an isolated feature at a certain position. It
emphasizes that algorithms benefit from “context,” as do ophthalmol-
ogists. This can also be confirmed for hard exudates, where the sensi-
tivity was 92% for individual feature detection and 100% for correct
classification of the entire image (García et al., 2009b).

Obviously, there are other relevant applications besides DR for the
use of automated feature detection in retinal images. The cup to disc
(c:d) ratio is the most important feature for use in glaucoma detection
(Fan et al., 2018; Haleem et al., 2016, 2017; Miri et al., 2015). As the
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clinician usually looks at the c:d ratio to judge the risk or progression of
glaucoma, algorithms can be used for the same task. Fan et al. could
show an accuracy of 98% in the detection of the entire optic disc, which
is the most important first step before the c:d can be measured (Fan
et al., 2018). These investigators applied a multimodal approach to
detect the disc and cup simultaneously in CFP and OCT with solid re-
sults, but the system has only been applied to 25 cases and is therefore
not sufficient for providing a valid AI method clinically, which usually
requires big datasets (Miri et al., 2015).

In general, numbers for sensitivity and specificity have to be
weighed carefully in AI diagnosis. The detection of single features can
be less accurate. Nevertheless, the entire image can be judged with
diagnostic accuracy and the correct treatment decision made. For
comparison, a single microaneurysm during slit-lamp examination may
be missed, but this will most likely not have any clinically relevant
consequences. However, in severe DR with many pathological features
present simultaneously, the examiner – an ophthalmologist or an al-
gorithm – may miss an individual microaneurysm and only detect 9 out
of 10 and the correct diagnosis of severe disease will still be confirmed.

3.1.2. Detection and quantification of features
Automated detection of CNV, a fibrotic scar, atrophy or drusen in

CFP are relevant in the context of clinical classification in AMD. These
features can either be solely detected or quantified, which means
measuring areas and volumes, e.g., of drusen (van Grinsven et al.,
2013), pseudodrusen (van Grinsven et al., 2015) or geographic atrophy
(Feeny et al., 2015). Van Grinsven et al. quantified drusen in 407

images of patients with AMD specifying the location, area and size of
each druse. The main focus was an automated AMD risk assessment
predefined by a central reading center (van Grinsven et al., 2013). This
assessment achieved an accuracy of 95%, similar to the performance of
two independent human graders. The drusen area between the two
human observers achieved an agreement of κ=0.87 and the algorithm
compared with each human observer reached a κ=0.91 and κ=0.86.
The same group tested an automated algorithm for the detection of
reticular pseudodrusen in a multimodal approach with CFP, fundus
autofluorescence and near-infrared fundus images in 230 cases and
achieved an accuracy of 94% (area under the ROC curve) (van Grinsven
et al., 2015). This output clearly supports the notion that machine
learning approaches can well be used for risk determination in AMD at
the level of human specialists. Moreover, novel insight into the patho-
physiology of AMD was established implying that drusen volume re-
gression can be a predictor of late AMD stages. The feasibility of such
efforts confirms again the enormous potential of such automated ap-
proaches, as no human expert would be able to track the drusen volume
over time manually.

In OCT, the detection of IRC and SRF (Fig. 16) is most relevant when
considering exudative diseases such as AMD or DME (Schmidt-Erfurth
et al., 2018a; Schlegl et al., 2018b). Deep learning has been applied for
a binary decision whether disease activity is present or not – as ne-
cessary for the clinician's decision to “treat or not to treat” in a flexible,
PRN or treat-and-extend (T&E) regimen. IRC or SRF may be important
when determining disease activity from OCT scans or for initial diag-
nosis. Algorithms which detect whether fluid is present in AMD or DME

Fig. 13. Interpretation of a deep learning model's output for the detection of diabetic retinopathy. Color-coded map obtained from the model is overlaid on a fundus
image highlighting pathologic regions on which the decision was based [Adapted from Gargeya and Leng (2017)].

Fig. 14. Prediction of age from fundus image (left) using a deep learning model and the corresponding heatmap overlaid in green (right) indicating the areas of the
fundus that the neural network model is relying on to make the prediction [Adapted from Poplin et al. (2018)].
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can serve for diagnostic grading of disease activity at baseline
(Chakravarthy et al., 2016; Liu et al., 2011a; Sidibé et al., 2017;
Srinivasan et al., 2014; Sun et al., 2017) to facilitate clinical processes
(e.g. preselection of the most important scan for the examining doctor
to save time (Chakravarthy et al., 2016) and for treatment decisions
(Schmidt-Erfurth et al., 2018a; Prahs et al., 2018). Please refer to the
chapter “Guidance of therapy” for further details.

Alsaih et al. compared the different algorithms available for DME
detection in OCT and found a very variable sensitivity/specificity in
differently sized datasets (69%/94% in 45 (Srinivasan et al., 2014),
81%/63% in 32 (Sidibé et al., 2017) and 69%/94% in 326 (Liu et al.,
2011a) compared with their own results of 88%/88% in only 32 da-
tasets of 16 patients and 16 healthy controls (Alsaih et al., 2017). Ef-
ficiency in a small number of patients may be achieved, however, a high
accuracy for adequately training the algorithm can usually only be
reached in large datasets. Again, this is similar to a human progressively

gaining expertise, e.g., in distinguishing DME or neovascular AMD
during residency. A retina specialist usually and “intuitively” will not
have any difficulty with the correct diagnosis of an OCT based on prior
experience with large numbers of patients.

Sun et al. evaluated images of DME and dry AMD compared with
healthy controls and automatically classified 99.7% of the images
correctly as diseased or healthy. Their dataset consisted of 297 DME
scans, 213 healthy scans and 168 dry AMD OCT scans (Sun et al., 2017).
This result is superior to the results of the risk assessment of van
Grinsven et al. in terms of correct detection but when considering its
value in clinical routine most likely less relevant than the risk-specified
assessment (van Grinsven et al., 2013). A third group classified AMD
with drusen detection from OCT and CFP scans combined and were
most successful in achieving a sensitivity/specificity of 100%/97% in
100 CFP and 6800 OCT images of 100 patients (Khalid et al., 2017).
This underlines the importance of an algorithm having adequate

Fig. 15. Examples for structures in color fundus photography. On the left all available anatomic landmarks are used for orientation: fovea, macula, blood vessels,
optic nerv head, center of optic nerve head(Molina-Casado et al., 2017). On the right: orientation from left scan allows subsumption of relevance of pathologic
structures; microaneurysms and hemorrhage are visible in this image; the corners show exemplary image patches for variability of microaneurysms that algorithms
are comparing with.(Moccia et al., 2018).

Fig. 16. Fully automated quantification of intra- and subretinal macular fluid by deep learning. This method was validated in 1200 eyes, 3 diseases and 2 OCT
devices and achieved a clinically applicable accuracy of 90%–96%. Upper row: OCT b-scans; middle row: ground truth=manual annotation by human grader; lower
row: automated result for intra- and subretinal fluid quantification. (Schlegl et al., 2017).
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practice for clinical usage and the importance of a solid learning part
with a large training set for any machine learning model.

With regards to detection and in addition grading stages of geo-
graphic atrophy, results using AI in OCT instead of CFP are already
most convincing. Ji et al. evaluated an algorithm against two manual
expert graders and achieved a κ > 0.99 for each comparison (human 1
vs. human 2, human 1 vs. algorithm, human 2 vs. algorithm), which
offers promising clinical applicability for the support of clinicians in
daily routine (Ji et al., 2018). The distinction between individual retinal
layers is also of relevance in this context (ElTanboly et al., 2017). An
alteration of the RPE, as in PED, may help to guide the diagnosis in a
screening situation for active AMD (Sun et al., 2016). Nerve fiber layer
changes are important for glaucoma detection by OCT, where the c:d
ratio can also be detected in great morphological detail (Miri et al.,
2017).

In conclusion, the quantification of features, for example of fluid, is
more informative than a simple binary yes-no classifier in diagnostic
grading of exudative disease. Different groups have used AI-based al-
gorithms, mostly supervised machine learning approaches, to manage
this difficult task particularly for fluid quantification of IRC or SRF
volume (Fig. 16) (Breger et al., 2017; de Sisternes et al., 2017; Lee et al.,
2017b; Montuoro et al., 2017; Roy et al., 2017). Another important
feature that may benefit from quantification and has been solved with
AI approaches is the volume of drusen in early to intermediate AMD, as
this appears to be an indicator for the risk of disease progression
(Abdelfattah et al., 2016; Chen et al., 2013; Bogunovic et al., 2017a;
Schmidt-Erfurth et al., 2018b). Another promising application of AI in
grading disease severity may be the detection and measurement of
subclinical features such as hyperreflective foci (HRF) that are only
visualized by OCT resolution and not opthalmoscopically. Quantifica-
tion of HRF is relevant for both AMD and DR grading. Although both
have different pathophysiological origins such as migrating RPE or lipid
exudation, they can be detected with the same algorithm and support
disease classification or risk assessment of different retinal diseases
more reliably than the human expert can ever achieve.

3.2. Screening for retinal disease

The aim of screening is to differentiate subjectively healthy in-
dividuals into (many) objectively healthy people and (few) objectively

diseased patients. Screening is a preventive method and useful if it
achieves high sensitivity and specificity and if the output of the
screening purpose proceeds in a meaningful context. This may, for in-
stance, be a shortening of the delay to detection in an elevated risk for a
vision-threatening event such as CNV in a fellow AMD eye or the timing
of a therapeutic intervention. Screening is primarily the binary decision
between healthy and diseased (the distinction of different activity
stages will be described in the following chapter). In terms of setting,
screening is most efficient in large groups of individuals who would not
be seen by an ophthalmologist in regular practice. Screening technology
could become widely accessible with the era of smartphones. Dedicated
screening cameras will most likely be integrated into portable digital
devices. Such procedures should be autonomous with little requirement
for trained personnel and should ideally be affordable and time-saving
for the “incompliant” patient who fails to make regular visits to a
doctor's office.

The first step necessary in a well-designed screening algorithm is
recognition and exclusion of insufficient image quality. Poor quality
could lead to a false negative result and may prevent timely diagnosis.
In addition, an algorithm's sensitivity and specificity are the most im-
portant determinants for deciding whether it can be used for screening
purposes. A high sensitivity is important to avoid missing patients who
urgently require treatment as they were false negatives. A high speci-
ficity helps to prevent the healthcare provider from being flooded with
too many false positives and undertaking inefficient interventions. False
decisions could also increase patients' and doctors' mistrust in the
usefulness of a screening tool. Screening devices should ideally be lo-
cated in places with high patient through-put such as primary care
offices, which are not routinely involved in ophthalmological care but
could support ophthalmic screening when equipped with reliable AI
tools.

3.2.1. Diabetic Retinopathy Screening
Early detection of retinopathy is an important part of management

for millions of individuals with diabetes. According to the International
Diabetes Federation there were 425 million people with diabetes
worldwide in 2017. The current guidelines of the American Diabetes
Association recommend patients with diabetes without any eye symp-
toms see an ophthalmologist bi-annually. However, about 50% of these
patients do not follow the recommendation. The most common and

Fig. 17. This figure shows a schematic overvue of the iDx-DR algorithm performance for Diabetic Retinopathy (DR) Screening: first, a quality assessment decides if
the image can be used for analysis or if there are dark areas, areas that are not sharp enough or a generally wrong location of the image; second a deep learning
algorithm using convolutional neuronal networks screens the image for clinical biomarkers (e.g. microaneurysms, hemorrhages, exsudates, etc.); as a last step the
disease assessment with inputs from both the clinical biomarker assessment as well as the use of an anatomical location definition is performed for clinical decision
and classification into no DR, moderate DR or vision-threatening DR. This device has received approval for clinical use by the food and drug administration (FDA) in
April 2018.
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most needed use case for retinal screening with AI methods is thus the
screening for DR. Several research teams and companies therefore focus
on DR screening from CFP (Abramoff et al., 2013, 2016; Gargeya and
Leng, 2017; Gulshan et al., 2016; Ting et al., 2017) (Fig. 17).

Screening for DR means the classification of patients with diabetes
as an underlying disease into patients with no DR (with no retinal
changes) and patients with DR, where few or many retinal changes can
be detected even in the absence of any visual complaint. Several clinical
devices are currently under evaluation or already available (for in-
stance, RetinaLyze®). At the moment, these are still large fundus cam-
eras, designed for use in the field of ophthalmology and not yet small
portable smartphone additions. In April 2018, the US FDA permitted
marketing of the first medical device to use AI to detect greater than a
mild level of DR (iDx-DR). The iDx-DR device combines an AI- and
cloud-based algorithm with an almost autonomous retinal fundus
camera. Fundus images of sufficient quality are automatically differ-
entiated into negative (= non-referable= no or mild DR) or positive,
indicative of a condition of more than mild DR resulting in the referral
to an ophthalmologist (referable DR). Their algorithm does not differ-
entiate between no or mild DR as the presence of a few microaneurysms
(mild DR) would not lead to any clinical consequences for the patient
(Abramoff et al., 2013, 2016). FDA approval was granted based on a
study of 900 patients with diabetes at ten primary care sites, which
resulted in correct identification of a positive finding indicative of DR in
87.4% of individuals and a correct negative result in 89.5%. As the
detection algorithm was trained on DR in untreated otherwise oph-
thalmologically healthy patients, previous laser and surgical or phar-
macological treatment were exclusion criteria as well as manifest dis-
ease with DME, severe non-proliferative or proliferative DR.
Furthermore, comprehensive eye examinations were recommended at
the age of 40 and 60 years. Interestingly, the FDA set a mandatory level
of accuracy as the primary endpoint for this trial with a sensitivity of
more than 85% and a specificity of more than 82.5%. Considering this
context, the accuracy numbers given on different screening methods
may be interpreted regarding the IDx device as a benchmark. In com-
parison, particularly the sensitivity of ophthalmoscopy performed by
clinicians is substantially lower at 73%, with a 91% specificity
(Lawrence, 2004). Thus, we may interpret that the FDA chooses a
higher sensitivity over accurate specificity in the context of screening
applications.

In another published DR screening algorithms, the sensitivity varied
from 87% to 97%, and the specificity from 59% to 98% (97%/59%
(Abramoff et al., 2013), use of 1748 images; 97%/87% (Abramoff et al.,
2016), use of 1748 images; 87% (Gulshan et al., 2016), use of 1748
images; 91–100%/91%–92% (Ting et al., 2017), use of 76,370 images;
94%/98% (Gargeya and Leng, 2017), use of 75,137 images). These
numbers show that the majority of available AI methods would be
capable of being used for DR screening according to requested FDA
endpoints and most of them seem to be performing better and faster
than clinicians.

The largest study to date among the publications mentioned was
performed by Ting et al. who reported the development and validation
of a deep learning system for DR detection using CFP images from the
Singapore National Diabetic Retinopathy Screening Program. The
system was evaluated in 494,661 images for the primary disease DR and
also for concomitant diseases including glaucoma and AMD. The sen-
sitivity and specificity for referable DR, vision-threatening DR, glau-
coma and AMD were all above the FDA criteria (91%/92%, 100%/91%,
96%/87%, 93%/89%). In the same study, 10 multiethnic datasets were
tested for referable DR as well and here the sensitivity ranged from 92%
to 100% and the specificity from 73% to 92%. The ground truth was
developed within national screening program gradings by human gra-
ders (Ting et al., 2017).

All these examples show that AI-based DR screening algorithms
have reached or may even outperform the level of accuracy of clinical
experts. DR screening in particular carries enormous potential as

support for ophthalmologists, may help to reduce the prevalence of late
and cost-intensive disease stages and is likely to pioneer digital medi-
cine applications in the near future and at a large scale.

3.2.2. Screening for age-related macular degeneration
Another retinal disease with pandemic dimensions that lends itself

to AI-based screening is AMD. Several publications report on the au-
tomated detection of AMD on color photographs with a sensitivity/
specificity of 93%/89%, use of 72,610 images, or an accuracy of 90%
(“comparable to human performance”), use of more than 130,000
images (Burlina et al., 2017). Approaches based on fundus photographs
may be clinically useful in the diagnosis of early AMD stages to identify
patients requiring more detailed investigations and follow-up. Never-
theless, compared with DR screening, the role of color photography in
the diagnosis of AMD, particularly neovascular AMD, is rather limited
and it is reasonable to believe that OCT-based screening methods could
be more successful in this specific setting. OCT is able to identify several
signs of AMD that are not visible on fundus photographs, including
hyperreflective foci and outer retinal thinning, which is an early hall-
mark of geographic atrophy. Detecting these signs may be helpful in
identifying patients with AMD disease as opposed to individuals pre-
senting normal retinal ageing. However, an important drawback of
OCT, at least at this time, is its limited availability in the primary care/
screening setting. The introduction of low-cost OCT systems will
probably allow more screening tools to be available based on this
technology.

AI research using OCT to screen for AMD includes that of Venhuizen
et al. They published a screening system validated in 367 individuals
which reached a sensitivity and specificity each of 93% against their
reference standard (examination by an ophthalmologist). This
screening system was developed on a fairly large database of 3265 OCT
scans (Venhuizen et al., 2017).

3.2.3. Glaucoma screening
Algorithms use the same features clinicians evaluate during slit-

lamp examination for glaucoma screening. Abnormalities of three kinds
are used: the c to d ratio, the area of the neuroretinal rim and the
“ISNT” rule, evaluating the width distribution of the neural rim around
the optic nerve head (Haleem et al., 2017; Issac et al., 2015; Kim et al.,
2017).

Isaac et al. reported on an AI-based glaucoma classification using all
three features for the distinction between healthy individuals and pa-
tients with glaucoma. They achieved an accuracy of 94% as well as a
sensitivity and specificity of 94% in detecting glaucoma. As a limita-
tion, this was only tested in a dataset of 67 eyes (35 healthy, 32 glau-
coma). In clinical practice, perimetry and OCT measurements are fur-
ther contributors to an early diagnosis of glaucoma. The combination of
the above-mentioned three features with changes in the retinal nerve
fiber layer has large potential for screening purposes as well but the
same limitation mentioned as for AMD (i.e. the limited accessibility of
OCT) must be considered. Slit-lamp features together with visual field
analyses improve results of glaucoma screening to a large extent: in a
dataset of 499 individuals (297 glaucoma, 202 healthy; 98% accuracy,
sensitivity and specificity) results were excellent but the practical use
for screening purposes is limited as visual field data are not available
for population-based screening programs and are certainly not the
modality of choice when considering low-cost broadly available and
easy-to-use devices (Kim et al., 2017).

Bowd et al. also applied their algorithmic approach to the combi-
nation of OCT and visual field data in a dataset of 69 healthy control
participants and 156 patients with glaucoma and tested their algorithm
for OCT alone, visual field alone and a combination of both (Bowd
et al., 2008). This led to an accuracy of 82% (OCT alone), 84% (visual
field alone) and 87% (combination) (area under the ROC curcve) and
showed that there is potential for stand-alone OCT approaches for
glaucoma screening as well as for CFP. In CFP images, the study by Ting
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et al. mentioned earlier detected possible glaucoma as a concomitant
disease in a huge dataset of patients with diabetes with an accuracy of
94% (area under the ROC curve; use of 125,189 images (Ting et al.,
2017).

3.2.4. Retinopathy of prematurity screening
Similar to DR, retinopathy of prematurity (ROP) is a condition that

can be well-diagnosed from CFP alone. Human-graded screening pro-
grams or telemedicine are widely used in less specialized hospitals. The
largest established ROP screening program is the SUNDROP (Stanford
University Network for Diagnosis of Retinopathy of Prematurity) pro-
gram established in 2008 by Moshfeghi et al. and followed up in pub-
lications for 6 years (Murakami et al., 2008; Wang et al., 2015).
However, ROP screening has not yet seen large developments regarding
automated, AI-based diagnosis.

There have been a few attempts at using machine learning to au-
tomatize ROP diagnosis. Ataer-Cansizoglu et al. developed the i-ROP
system (Ataer-Cansizoglu et al., 2015). Here, AI was applied on a da-
taset of 77 wide-angle retinal images of infants and compared with
clinical judgement in ophthalmoscopic examinations as well as three
manual gradings of each image. The i-ROP system achieved 95% ac-
curacy for classifying ROP versus no ROP compared with fundus ex-
amination. This was comparable to the performance of three individual
experts (96%, 94%, 92% accuracy). In a second approach the i-ROP
system was evaluated against more experts with an accuracy of
79%–99% when fewer features where used for diagnosis. The original
accuracy of 95% could not be achieved with less features, reassuring
that the use of all known features results in the most robust ROP di-
agnosis (Campbell et al., 2016). It needs to be mentioned that the gold
standard for the detection of ROP for clinical application is the ex-
amination by a ROP specialist and CFP will already be inferior because
important details of the retinal periphery may be missed. Both of the
studies mentioned have only compared with the specialist grading of
the image, not with clinical examination. Again, the number of avail-
able clinical experts in unspecialized clinics (that may be specialized for
survival of prematurely born infants but may not have the availability
of a retina specialist) has to be compared with the less accurate CFP
screening and for manual human-graded programs this deficit has been
accepted. Therefore, there is a very large potential for the establishment
of automated screening programs for ROP in the future as most clinics
have cameras already available and, as in DR, an accurate result can be
achieved for these images. Nevertheless, it may be harder to establish
such programs as the accuracy is usually set higher in medical needs
and symptoms that cannot be clearly articulated and where a false-
negative results can be much more devastating than in DR.

The use of ROP screening will remain a relevant future topic as
there are many medical centers that may be able to deliver general
healthcare to prematurely born infants, but may not have an oph-
thalmic expert available for continuous monitoring, especially early
after birth when infants are still hospitalized. Here automated or
human-graded will be a decision of cost effectiveness and need.

3.2.5. Screening for retinal disease in general
Many groups currently work on the development of image-based

screening for retinal disease both on CF and OCT and the future will
certainly lead to such approaches for quick filtering of healthy persons
and those with disease. This will allow the ophthalmologist to con-
centrate on the management of clinically affected patients, monitor
them for high risk of disease development and initiate therapy in a
timely manner. Approaches for the classification of CFP and OCT
images for no retinal disease versus retinal disease that can serve for
screening purposes without limitation to a specific alteration have al-
ready been published (Choi et al., 2017; Liu et al., 2011b).

Choi et al. described automated differentiation between normal eyes
and nine retinal diseases from CFP images alone (Choi et al., 2017). The
study lacked a large database (only 397 cases of which only 25 cases

were healthy) and the cases were unevenly distributed among diseases
(one disease had only one image while another had over 60 images).
This is most likely the reason for only 31% accuracy for all ten classes.
When only the three most common classes were classified (AMD, DR
and normal), an accuracy of 73% could be achieved. Using large real-
life datasets from hospitals, for example, will most likely allow a much
higher accuracy in the near future.

Liu et al. described a screening approach in OCT images for differ-
entiation between healthy eyes and eyes with macular edema, macular
hole or AMD. 193 eyes were used for development and 131 for vali-
dation of classification into these four categories. The accuracy (area
under the ROC curve) was between 93% and 98%, depending on dis-
ease (highest for healthy cases) which is a promising result (Liu et al.,
2011b).

3.3. Diagnostic grading/staging of retinal disease

The difference between screening and diagnostic grading or staging
of retinal disease mainly lies in the patient population. Screening is
applied in subjectively healthy individuals, is performed in large co-
horts and will usually have only a small proportion of positive test re-
sults throughout the population. DR screening is performed to distin-
guish between people with diabetes and no signs of DR and people with
diabetes and signs of DR. Consecutively, people with signs of DR can be
divided into people with non-referable signs of DR (these do not need to
see an ophthalmologist and have mild DR) and patients with referable
DR. This positive subpopulation can be further divided resulting in
diagnostic grading or staging. Patients with referable DR can have
moderate DR, proliferative DR or DME. Further, they can have vi-
treomacular traction, an epiretinal membrane or retinal detachment.
This high potential of differentiation clearly highlights the enormous
savings in time and manpower introduced in a large scale of health care
monitoring, which a developed society should be able to grant all of its
citizens. These are all summarized in the following chapter discussing
diagnostic grading/staging for retinal disease in the different diseases
beyond screening. Screening and diagnostic grading/staging may
happen practically at the same time of presentation but the develop-
ment of diagnostic grading/staging algorithms requires many more
datasets. For example, a study for screening may require 3000 sets to
have a fair amount of disease in the sample (e.g. 5%=150 cases). But a
division of 150 cases into three different classes only results in 50
samples in each group. Considering that for validation half of the
samples are used as the test set and the other half for validation, it is
obvious that a screening algorithm could be developed faster with less
patients.

3.3.1. Diagnostic grading/staging of DR
As mentioned in the chapter Diabetic Retinopathy Screening,

Abramoff et al. distinguish between referable and non-referable DR as
do most automated DR algorithms. A staging between moderate DR and
vision-threatening DR is performed for their referable DR cases. Vision-
threatening DR includes severe non-proliferative DR, proliferative DR
and DME according to the ICDR classification (International Clinical
Classification System for Diabetic Retinopathy by the American
Academy of Ophthalmology). The further automated differentiation
between these cases is not delivered as an output by the device as there
is no practical consequence and a false positive result may result in
wrong assumptions for a patient with clinical and legal implications.
Therefore, the ophthalmologist must serve as an expert for therapeutic
consequences and again the screening output should ideally only sup-
port the clinician and not entirely take over the therapeutic con-
sequences (Abramoff et al., 2016). The legal aspect, however, is an issue
which has not been clarified yet, as doctors may be sued for errors and
algorithms necessary need legal control as well.

Gulshan et al. tried diagnostic grading/staging on their two datasets
(8788 images and 1745 images) as well. For “moderate or worse DR
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only” the sensitivity was 90% and 87%, respectively, and the specificity
was 98% in both datasets; for “severe or worse DR only” the sensitivity
was 84% and 88% and specificity 99% and 98%; for “DME only” the
sensitivity was 91% and 90% and the specificity 98% and 99%. This
shows that having a large dataset allows acceptable results for ad-
vanced disease stages as well (Gulshan et al., 2016), as Ting et al.
confirmed using almost half a million images with a sensitivity and
specificity for referable DR versus vision-threatening DR only (ex-
cluding moderate DR) of 91%/92% versus 100%/91% (Ting et al.,
2017).

Takahashi et al. focused on diagnostic grading/staging by using the
ground truth of actual interventions (laser, injections, surgery, nothing)
performed after an image was taken (Takahashi et al., 2017). They
included 4709 CFP and categorical visual acuity changes (improved,
stable, worsened) for training and tested the algorithm on 496 cases,
reaching an accuracy of 96% in the prediction of interventions com-
pared with three retina specialists who reached an accuracy of 92–93%.
This is a very practical concept and can be relevant in making adequate
treatment decisions. Nevertheless, the false-negative rate – when the
grade was “not requiring treatment” but treatment was actually needed
– was 12%. The false positive rate – when the grade was “requiring
treatment in the current visit” but treatment was actually not needed at
the next visit – was 65%, which can lead to a large number of visits for
treatment which might not be needed. This is not only cost ineffective
but also creates a large number of alarmed patients who believe a
treatment will be needed.

3.3.2. Diagnostic grading/staging of AMD
Diagnostic grading/staging is also an important AI application in

AMD as the changes seen in OCT determine the progressive stage of
disease and no binary cut-off can be made. Changes seen in early AMD
can remain for decades without progression. Venhuizen et al. analyzed
AMD OCT data for screening purposes, not only in a binary approach as
mentioned earlier but also dividing 367 individuals into 5 different
grades for diagnostic grading/staging: no AMD, early AMD, inter-
mediate AMD, advanced AMD geographic atrophy and advanced AMD
choroidal neovascularization (Fig. 18). The overall sensitivity and
specificity reached 98% and 91% against the reference standard (ex-
amination by an ophthalmologist). Depending on the different diag-
nostic stages, different treatments and individual prognoses will be the
consequence which requires advanced medical and legal control
(Venhuizen et al., 2017). Another way of diagnostic grading in AMD is
drusen phenotyping, which can serve as the basis for prediction and risk
assessment of disease conversion as outlined in the chapter on prog-
nosis.

3.3.3. Diagnostic grading/staging of glaucoma and retinopathy of
prematurity

No system to differentiate between different stages in glaucoma has
been published. Publications in glaucoma “staging” focus on the pro-
gression of disease as this indicates that (more) therapy is necessary,
even if the intraocular pressure might be in a normal range. Potential
can be seen in monitoring patients over time and taking changes of the
c:d ratio and the nerve fiber layer thickness into consideration for
learning models. To date, no such study in a large patient cohort using
machine learning has been reported.

The few available publications for the use of machine learning in
ROP have focused on the differentiation between no ROP and (pre-)plus
disease. The different zones/vascularization stages have not been the
focus of any large patient cohort using machine learning in current
publications. The potential would be in automatically classifying these
different stages of vascularization for monitoring purposes and timely
treatment indication in a setting lacking regular expert surveillance.
This would be a reliable way to trigger treatment decisions – similar to
AMD, DME or retinal vein occlusion – especially in anti-VEGF treatment
in premature infants (once entirely established). Ataer-Cansizoglu et al.

distinguished between no ROP, preplus disease and plus disease but did
not take the different vascularization stages into account (Ataer-
Cansizoglu et al., 2015; Campbell et al., 2016).

3.3.4. Diagnostic grading for systemic disease
As has been recognized early on, the retinal condition may reflect

systemic disease. Many ophthalmologists are routinely involved in di-
agnosing systemic diseases such as hypertension, sarcoidosis and other
autoimmune diseases, syphilis, CMV infection, tuberculosis etc. from
ophthalmoscopy. Poplin et al. demonstrated in an impressive way how
many and various conditions can be recognized using AI in fundus
images. The diagnostic grading of retinal CFP images to search for
cardiovascular disease was trained on images of 284,335 patients with
the primary objective of predicting cardiovascular risk factors. The
outcomes showed moderate accuracy in the primary objective but other
features were identified with high accuracy: age (accuracy± 3.26
years), sex (accuracy 97%), smoking status (accuracy 71%), systolic
blood pressure (mean absolute error within 11mmHg) and major car-
diac adverse events (accuracy 70%) (Poplin et al., 2018). This list of
features demonstrates that diagnostic grading from retinal images
reaches far beyond retinal disease and that automated algorithms will
enable us to detect more from images than any clinician would be able
or intend to diagnose. AI analysis can detect subclinical and discrete
features appearing below the threshold of a human observer, quantify
minimal differences in feature expression and recognize patterns among
large cohorts. When broadly available, future indications will likely

Fig. 18. Venhuizen et al. assess risk stages in patients with age-related macular
degeneration (AMD). Examples of b-scans showing the different severity stages
of AMD as defined by a central reading center: (a) No AMD, (b) early AMD, (c)
intermediate AMD, (d) advanced AMD with GA, and (e) advanced AMD with
CNV. (Venhuizen et al., 2017).
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include vascular pathologies, ageing disorders and neurodegenerative
diseases such as Alzheimer's disease and multiple sclerosis, not only in
CFP, but also in OCT (e.g. OCTiMS study: Optical Coherence Tomo-
graphy (OCT) Trial in Multiple Sclerosis, a 3-year, pharmacologically
non-interventional study to evaluate OCT as an outcome measure in
patients with relapsing remitting multiple sclerosis; clinicaltrials.gov
study identifier NCT02907281). The retina as a window to the body
will attract a lot of non-ophthalmological attention, once “exploited”
extensively by AI methodologies.

3.4. Guidance of therapy

One major advantage of AI, particularly for designing an optimal
therapeutic management, is that it enables individual clinicians to ac-
cess and utilize prior experience provided by hundreds of thousands of
previous cases. AI generates knowledge from data in a much more ac-
cessible and reproducible way than the most experienced experts. By
detecting characteristic patterns in large datasets, machine learning as
opposed to population level studies, for instance, offers ground-
breaking progress in the field of personalized prognosis. Analogous to
precision medicine, where, for instance, oncologic therapy is prescribed
according to the specific individual tumor genotype, AI in ophthal-
mology may enable an individualized prognosis of therapeutic re-
sponse, optimal retreatment intervals, and future disease progression.
Furthermore, AI could be used in a more traditional sense to auto-
matically diagnose disease activity in retinal imaging data to blankly
automatize and standardize office procedures and retreatment assess-
ments. Thus, a standard of best practice could be reliably implemented
in any setting in a cost and time effective manner. Finally, advanced
disease models based on AI are able to provide valuable insight into the
pathophysiology of disease by interpreting the microstructural features
used by predictive analyses.

3.4.1. Automated detection of disease activity
Growing patient populations in times of progressive longevity in

industrialized countries, the increasing prevalence of retinal disease
and widening of the retinal therapeutic spectrum continue to challenge
the daily practice of ophthalmologists with an overwhelming number of
visits and imaging investigations. In this setting, it is demanding for
clinicians to consistently assess the large number of images per patient
in a reliable and time-efficient manner. Furthermore, disagreement
exists over adequate interpretations of the changes seen in retinal
imaging studies. For instance, reading centers in a trial setting may
grade OCT images differently from study investigators or, even more,
physicians in the real world (Heimes et al., 2016; Toth et al., 2015).
Here, AI may provide urgently needed relief by providing automated,
standardized assessment of disease activity to improve clinical man-
agement and usage of healthcare budgets.

Deep learning to diagnose disease activity in OCT images of patients
with neovascular AMD was proposed by Chakravarthy et al., in 2016
(Chakravarthy et al., 2016). The algorithm presented detects overall
presence or absence of macular fluid in Cirrus OCT images with an
accuracy reaching close to the inter-observer agreement of three retina
specialists or a reading center. Furthermore, the algorithm has been
used to highlight the OCT slices containing the most relevant in-
formation regarding the presence of fluid, which was suggested to en-
hance the capability of the ophthalmologist to focus on these scans in a
time-effective manner.

Recently, Prahs et al. proposed a similar deep learning model,
however, with the goal of automatically determining the need of anti-
VEGF retreatment rather than purely the presence of fluid (Prahs et al.,
2018). The model was trained on over 180,000 central B-scans of pa-
tients under real-world anti-VEGF therapy and corresponding retreat-
ment decisions. A predictive performance of over 95% was achieved. A
major drawback of this work is that only central B-scans were con-
sidered, which may provide false results in the case of scan

misplacement, e.g., during inability to fixate centrally and neglect
justafoveal pathologies. Similarly, approaches to automatically detect
disease activity in DME have been presented but based on very limited
validation in a small dataset (Alsaih et al., 2017).

In general, despite the excellent performance of AI algorithms in
classifying disease activity, the main limitation of these approaches is
that they only provide a binary decision regarding the presence or
absence of fluid. This lack of granularity may hinder useful application
in clinical practice, as outlined below.

3.4.2. Automated quantification of pathology
In the management of patients with retinal disease, it is mostly not

the presence or absence but the quantity of a particular pathology that
determines therapeutic decision making. For instance, in diabetic ma-
cular oedema, current treatment recommendations include to admin-
ister anti-VEGF therapy until fluid remains stable (Wells et al., 2015).
Another example is the recommendation to treat PED if it exhibits ac-
tive growth which is reflected in an increase in PED volume (Penha
et al., 2013; Schmidt-Erfurth et al., 2015). Furthermore, investigators
suggest differential roles for different types of fluid (Schmidt-Erfurth
and Waldstein, 2016). For instance, intraretinal fluid may be a re-
treatment indication, while subretinal fluid up to a certain threshold
(200 μm in height at the foveal center) may not (Arnold et al., 2016).
All these paradigms require some degree of differentiation and quan-
tification of the microstructural changes in the retina. Moreover,
quantification of pathology could be important for prognostic reasons
as some biomarkers (such as intraretinal fluid) show a tight correlation
with visual acuity and vision outcomes (Waldstein et al., 2016). In in-
termediate AMD, measurements of drusen volume could be used to
assess the individual risk of CNV onset (Abdelfattah et al., 2016;
Schmidt-Erfurth et al., 2018b).

Several groups have addressed this unmet need and have started to
develop algorithms to automatically quantify retinal pathology using
AI. One important target of quantification is retinal fluid and a few
successful approaches have been presented, mainly based on supervised
deep learning (Breger et al., 2017; Lee et al., 2017b; Montuoro et al.,
2017; Roy et al., 2017). The method proposed by Schlegl et al. is the
most extensively validated and most broadly applicable (1200 eyes, 3
diseases, 3 OCT machines), achieving an overall accuracy of
R2= 0.90–0.96 (Schlegl et al., 2018b). It also differentiates between
subtypes of fluid, which has important implications on prognosis and
management (Fig. 16). Other approaches often suffer from limited va-
lidation in relying on only a few cases or a narrower selection of dis-
eases or devices.

A second relevant setting for the quantification of disease is dry
AMD in both its early and late forms. Using AI, it is possible to quantify
drusen on OCT (Chen et al., 2013; de Sisternes et al., 2017), yielding
drusen volume measurements rather than drusen area alone when al-
ternatively based on fundus photography (Rubin et al., 2013; van
Grinsven et al., 2013). However, the quantification of pseudodrusen
currently seems to be confined to 2D imaging methods (van Grinsven
et al., 2015).

Investigators have also proposed quantification of hyperreflective
foci using deep learning (Schlegl et al., 2018a). Large foci may corre-
spond to pigmentary changes on color photographs, when quantified
using deep learning (Schmitz-Valckenberg et al., 2016). HRF were
shown to represent a major biomarker in dry AMD progression
(Schmidt-Erfurth et al., 2018b). In this respect, AI methods nicely re-
flect histological evidence showing RPE migration in active disease
(Curcio et al., 2017). Moreover, segmentation algorithms have been
developed for quantification of GA lesions on 3D OCT as well as on
fundus photographs (Feeny et al., 2015; Ji et al., 2018). It has become
clear that fundus autofluorescence (FAF) merely demonstrates end
stage findings with a black RPE defect seen in 2D-en-face FAF images,
while 3D SD-OCT depicts primary neurosensory loss together with RPE
migration preceding active GA progression (Sayegh et al., 2017).
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3.4.3. Prediction of need for retreatment
One of the great dilemmas of intravitreal therapy is the difficulty in

determining and planning adequate retreatment intervals. In an ideal
world, patients would receive intravitreal treatment as often as required
to maintain complete disease control but as rarely as possible to avoid
the potential morbidity associated with anti-VEGF therapy such as en-
dophthalmitis or development of RPE atrophy. To achieve this goal,
several therapeutic regimens have been proposed in the community,
including pro-re-nata (PRN) as well as treat and extend (T&E). Both
regimen have resulted in non-inferior visual acuity outcomes compared
with monthly therapy in randomized controlled trials (Busbee et al.,
2013; Silva et al., 2018). However, in clinical practice, a PRN approach
results in monthly follow-up visits, virtually for a lifetime, which are
clearly not manageable for both patients and physicians. Despite the
frequent visits, slow but irreversible visual decline may result from the
frequent recurrences that are essentially required to retreat the patient
(Schmidt-Erfurth et al., 2015) as well as out of potential delays between
the diagnosis of an exudative recurrence and subsequent retreatment
(Ziemssen et al., 2016). On the other hand, T&E schemes offer prag-
matic scheduling, a reduced number of visits and avoidance of long
treatment-free intervals. Nevertheless, concerns include the potential
overtreatment of patients who have biologically low requirements for
anti-VEGF and problems associated with trying to extend individuals
who are per se non-extendable and who are exposed to the risk of
exudative events by protocol (Freund et al., 2015).

In this scenario, the use of AI methods promises to result in pre-
dictive models that can determine upfront the need for treatment re-
quirements and frequencies. Ideally, an AI model would take the images
and clinical characteristics of a given patient acquired at baseline as
well as after a first injection and would provide, e.g., the probability for
extendibility up to a certain interval, i.e., the optimal extension length
as well as overall expected therapeutic requirements over a certain time
frame. Implemented in clinical practice, such models could dramati-
cally improve the plannability of anti-VEGF therapy, including
healthcare expenditure control and help to appropriately manage ex-
pectations of patients and physicians, and finally result in better out-
comes due to avoidance of under- or overtreatment.

The individualized prediction of optimal, personalized retreatment
intervals has already been achieved in proof-of-principle studies in the
field of neovascular AMD. Recently, Bogunovic et al. introduced an AI
model based on random forest that was designed to classify patients
with a low, medium or high need for retreatment a priori (Fig. 7)
(Bogunovic et al., 2017b). Data of 317 patients receiving ranibizumab
PRN therapy in a randomized, controlled multicenter trial were in-
cluded for model training. The OCT images acquired during the
common loading dose (month 0–3) were analyzed using image analysis
algorithms based on deep learning and graph cut (Schlegl et al., 2018b;
Zhang et al., 2014). This resulted in several hundred quantitative,
spatially and temporally resolved variables describing the individual
retinal morphology and the initial therapeutic response of each patient.
The resulting features were introduced into a modelling database and
used for machine learning. Over the remaining 21 months of the trial,
22% of patients showed a low need for retreatment (0–6 injections),
56% medium treatment requirements (6–15 intravitreal injections) and
the remaining 22% exceptionally high retreatment needs (16–21 in-
jections). With the AI model, it was feasible to a priori differentiate
these three groups with an accuracy (AUC) of 70%–77%. Noteworthily,
the performance of the automated algorithm was by 50% more accurate
than the assessment of a human retina specialist, particularly in de-
termining patients with a high therapeutic need in the future, hence
even in predictive challenges AI methods outperform experts.

Moreover, a view into the ranking of the clinical relevance of input
features in the random forest model offers an unbiased insight into the
most relevant OCT biomarkers determining overall retreatment need.
Specifically, the amount of subretinal fluid remaining at the end of the
loading dose ranked highest and high volumes of SRF were significantly

associated with a future need for more frequent retreatments. However,
for post hoc analyses like this, AI can only reproduce the intentions of
the protocol which required mandatory injection in any type of fluid.
One cannot conclude that SRF resolution is mandatory for visual re-
covery.

A similar predictive tool based on random forest and convolutional
neural networks was recently developed for the prediction of T&E in-
tervals in the therapy of patients with neovascular AMD (Bogunovic
et al., 2018). Patient-level data of 210 eyes receiving ranibizumab ac-
cording to a T&E regimen or at 12-month intervals were used for this
study. The AI model received automatically determined, quantitative
OCT biomarkers at baseline and after the first injection for training. The
goal of prediction was to classify extendable (injection interval between
8 and 12 weeks, 82% of the cohort) versus non-extendable patients
(interval between 4 and 6 weeks, 18% of cohort). Furthermore, the
investigators attempted to predict the maximum fluid-free interval
during the course of the trial. The model was successful in determining
extendable versus non-extendable patients with an accuracy (AUC) of
75%. The prediction of the longest recurrence-free interval was more
challenging at R2=0.27. Similar to previous findings, the volume of
subretinal fluid remaining after a first treatment represented the most
important biomarker considered by the model based on the definitions
of retreatment by protocol.

Investigators have also proposed predictive models for future re-
treatment in the field of macular edema secondary to RVO. Vogl et al.
reported on an AI-based predictive tool that could determine future
recurrence of macular edema after the loading dose with an accuracy of
79%–83%, based on 247 eyes with a 12-monthly standardized follow-
up (Vogl et al., 2017b).

Considering the proof-of-principle studies presented, it seems likely
that automated, AI-based assessments of therapeutic requirements will
become a reliable component of management in retinal practice in the
near future.

3.5. Prediction and prognosis

An exciting application scenario for AI methods is clearly to “foresee
the future” based on pattern recognition in prior data. Precise prog-
nostic tools would not only help to manage expectations of patients and
doctors, improve the quality of care by providing optimal therapies but
would also aid managing healthcare expenditure and introduce prag-
matism into retinal therapy. The major targets for prediction include
the functional outcomes after therapy and the future natural history
course of a disease. However, in principle AI is able to produce pre-
dictive tools for any given target, provided that sufficient training data
are available and that the task is per se solvable.

3.5.1. Prediction of visual acuity outcomes
The introduction of intravitreal anti-VEGF therapy is without doubt

among the greatest achievements in retina in the last decades.
However, ever-growing numbers of patients and interventions, sub-
stantial costs sometimes without a clearly visible benefit and difficulties
in treatment planning constitute some of the challenges associated with
the success story of anti-VEGFs. Furthermore, the development of
therapeutic substances is limited because the available agents already
show very high efficacy. Therefore, to differentiate one substance from
another, an effective selection of study cohorts continues to rise in
importance. AI definitively promises to solve several of these dilemmas
by the means of validated, personalized prognostic tools. It may offer a
precise, individualized forecast of visual outcomes after therapy, allow
interpretation and ranking of imaging biomarkers, assist in the identi-
fication of new biomarkers and finally provide cohort stratification in
substance development.

Neovascular AMD. The development of accurate systems to forecast
the future development of visual acuity under intravitreal therapy re-
presents one of the methodological break-throughs in AI research in
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recent years. The prediction of visual acuity outcomes is exceptionally
relevant because patients with neovascular AMD in particular show
substantial inter-individual variability in functional response to anti-
VEGF therapy. A solid prognosis of vision outcomes after one or several
years of therapy would likely lead to improved compliance by patients
and better adherence by physicians to the appropriate treatment regi-
mens. On the other hand, predictive tools may allow expensive, in-
vasive therapy to be saved in individuals in whom any intervention
would not be beneficial in the case of irreversible severe visual loss.

In the case of neovascular AMD, Schmidt-Erfurth et al. were the first
to introduce a prognostic model that allowed forecasting of visual
acuity outcomes after 12 months of anti-VEGF therapy in the setting of
a randomized controlled trial within an error margin of 8.6 letters, i.e.,
close to the inter-session variability of a best-corrected visual acuity test
(Schmidt-Erfurth et al., 2018a). The study was particularly compre-
hensive in including imaging-related biomarkers into the machine
learning model (Fig. 8). To allow a complete representation of OCT
biomarkers in the modelling database, deep learning was used to ex-
tract a comprehensive set of known OCT biomarkers from the 3D OCT
images acquired during the loading dose (Schlegl et al., 2018b; Zhang
et al., 2014). These included, for instance, precise measurements of
intraretinal fluid, subretinal fluid, pigment epithelial detachment and
thicknesses of the individual retinal layers (Fig. 8). The analysis re-
sulted in over 200 spatially and temporally resolved variables to ac-
curately represent each individual patient's retinal configuration. A
random forest AI model was trained and validated using the known
therapeutic response of over 600 patients receiving standardized rani-
bizumab therapy (in the context of a randomized controlled trial).

The model did not only predict individual visual acuity outcomes
with an accuracy (R2) of 71% but its interpretation also allowed a
comprehensive view into the specific biomarkers relevant for making
the predictions. It confirmed that, among the current fluid-based mar-
kers, intraretinal cystoid fluid confers the most pronounced effect on
visual acuity, i.e., a marked loss when large quantities of IRC are pre-
sent in the fovea. The analysis highlighted, however, the surprisingly
moderate overall correlation between retinal fluid on OCT and corre-
sponding visual acuity, with a coefficient of determination of
R2=0.21. Obviously, novel biomarkers must be sought for a better
understanding of the mechanisms of vision loss in neovascular AMD.
When analyzing the biomarkers for visual outcomes under therapy, the
model clearly illustrated that the starting visual acuity of the individual
patient and its initial response to therapy are almost exclusively the
main determinants for final vision outcomes. Hence, research is being
undertaken to examine additional biomarkers that could contribute to
the prognosis of visual function (Schlegl et al., 2017). These preexisting,
non-fluid-related markers may include a preexisting damage to neuro-
sensory layers and RPE as seen by AI methods in intermediate AMD,
and which may not recover easily additional fluid leakage (Schmidt-
Erfurth et al., 2018b).

A similar predictive model was recently proposed based on elec-
tronic medical records contained in a mineable data warehouse (Rohm
et al., 2018). The study did not consider complex OCT biomarkers but
spatially resolved measurements of retinal thickness provided by the
device segmentation software, which is prone to errors (Waldstein
et al., 2015). Nevertheless, the investigators showed successful pre-
diction of visual acuity outcomes after one year of real-world anti-VEGF
therapy within an error margin of 8 letters using model developed and
validated in 456 patients.

Diabetic macular edema and retinal vein occlusion. Analagous to the
above-mentioned studies, other papers have offered prognostic AI
models for DME and macular edema secondary to RVO. In the setting of
diabetic macular disease, an AI model was developed based on data of
the Protocol T study using patient-level information of 629 eyes and
including advanced OCT image analysis (Gerendas et al., 2017). The
study confirmed the significant importance of intraretinal cystoid fluid
for visual acuity. However, the prediction of final vision outcomes was

less precise at an R2 of 0.50 based on conventional biomarkers, high-
lighting again the need for novel biomarker searches. The prognostic
value was highest for IRC resolution after the first injection.

In macular edema secondary to RVO, recent efforts have also used
AI-based methods to analyze the predictive potential of OCT bio-
markers. Work by Vogl et al. offered further insight by quantifying the
visual damage conferred by retinal fluid, assigning 31 letters of BCVA
loss for each mm3 of intraretinal fluid in the foveal region (Vogl et al.,
2017a). The model achieved a predictive accuracy at month 4 of
R2= 68% and an error margin of only 6 letters. A second paper used AI
to segment the posterior vitreous boundary to diagnose the presence of
a posterior vitreous detachment by means of unsupervised clustering
(Waldstein et al., 2017). However, the study was not successful in
identifying additional relevant biomarkers for vision outcomes, which
highlights the limited conventional knowledge about disease-specific
biomarkers and the need to further develop AI rankings of clinically
relevant features.

3.5.2. Prediction of future natural disease course
Roughly a quarter of the population in industrialized countries over

the age of 60 years is affected by early or intermediate dry AMD, re-
presenting one of the greatest pandemics in modern medicine. Early
AMD is a chronically progressive disease characterized by a highly
heterogeneous speed of advancement. It may remain at an early stage
for the patient's entire lifetime, without any relevant functional im-
pairment, or may rapidly progress to advanced AMD, including CNV or
GA with an associated massive functional morbidity. However, in
clinical practice it can be very challenging to provide a robust prognosis
with regards to progression speed, risk of advanced AMD and timing of
the onset of advanced changes. At the moment, population-level studies
provide risk scores. However, these may, obviously, not immediately
translate to a given individual patient. This makes patient management
difficult both because of the challenge in determining optimal follow-up
intervals and because it leaves the patient worried with the uncertainty
around his or her personal risk of future vision loss. Moreover, in terms
of drug developments currently underway for dry AMD, it is imperative
to have solid data on the risk and speed of the onset of advanced AMD.
AI may allow the selection of study populations appropriately and may
thus enable stratification of cohorts to include only patients in whom
novel therapies would be likely to produce the measurable effect size
given for the duration of the trial. In this context, AI models have been
developed to provide a better understanding of the general manner of
dry AMD progression and predictive models that deliver personalized
risk prognosis for AMD conversion.

Drusen regression. To provide further insight into the main hallmark
of early AMD, i.e., drusen and their development over time, researchers
developed AI technology to model the growth and regression of drusen.
Recent natural history data show that drusen exhibit a characteristic
growth pattern with a cubic increase in volume over several years
(Schlanitz et al., 2017). Once drusen volume reaches a critical
threshold, sudden and rapid regression of drusen may occur. Drusen
regression is closely associated with the onset of advanced AMD and
development of CNV and/or GA in the exact area of the previously
regressed drusen often occurs within a few months.

In the predictive model developed, it was possible to capture the
usual growth pattern of drusen over time (Bogunovic et al., 2017a). 944
individual drusen (in 61 eyes) were identified by graph-cut analysis in
the population studied; 26% of these drusen regressed within an ob-
servation period of up to 6 years. The AI model was successful in pre-
dicting the precise location and time of future drusen regression with an
accuracy of up to 80% (Fig. 10). Further research should be directed at
the inclusion of healthy, elderly individuals to delve further into the
differentiation between “healthy” and pathological ageing of the retina.

AMD conversion. The first AI model to provide a personalized pre-
diction of AMD conversion was pioneered by a group at Stanford
University in 2014 (de Sisternes et al., 2014). The model was trained
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and validated on quantitative features of drusen and retinal layers ex-
tracted from 330 eyes of 244 patients using automated segmentation
algorithms. Random forest machine learning was used to create a sta-
tistical model that enabled determination of the individual disease
progression risk within 5 years with an accuracy of 74% (Fig. 11).
However, differentiation between CNV and GA was not attempted and
the work did not include pathognomonic features of AMD other than
drusen and retinal layer thickness.

More recently, a new AI model to determine the risk of AMD con-
version was proposed based on a larger dataset and a more compre-
hensive analysis of OCT biomarkers (Schmidt-Erfurth et al., 2018b).
This study included data from 495 patients with CNV in one eye and
intermediate AMD in the fellow eye, who were observed monthly
during a randomized controlled study (providing ranibizumab therapy
for the CNV eye). The analysis of this patient population offered par-
ticular value because of the high risk of progression in fellow eyes of
patients with CNV. During the 24-month observation period, conver-
sion to CNV was diagnosed in 114 eyes and development of GA in 45
eyes. Fully automated segmentation based on deep learning and graph
cut was used to obtain a comprehensive representation of the retinal
microanatomy, resulting in a volumetric quantification of drusen, hy-
perreflective foci, pseudodrusen and the individual retinal layers
(Schlegl et al., 2018a). Based on these data, the investigators taught an
AI model that was able to predict the development of CNV with an
accuracy of 68% and the onset of GA with an accuracy of 80%, and for
the first time enabled an a-priori differentiation between these two
entities within advanced AMD. Most surprisingly, the characteristic key
features leading to conversion towards SNV versus GA showed a dis-
tinctly different “signature” pattern supporting the notion that both are
physiologically distinct pathways. Interestingly, genetic profiles were
not relevant prognostic factors, and age only appeared as prognostic
marker for GA, but nor for CNV.

An interpretation of the individual features considered by the
random forest model offered revealing insights into the pathophy-
siology of AMD development (Fig. 12). The two modes of conversion,
i.e. CNV and GA, exhibited markedly different biomarkers that were
considered relevant by the AI model. A high volume of drusen was the
most important hallmark of disease progression in CNV. This is also
supported by recent data showing subclinical macular neovasculariza-
tion in intermediate AMD eyes, thus providing evidence for sub-RPE
fluid exudation as an early sign of the onset of retinal exudation (de
Oliveira Dias et al., 2018). By contrast, development of GA was mainly
heralded by hyperreflective foci in the retina and loss of the outer
neurosensory elements. Recent histopathology data supports the con-
cept of hyperreflective foci representing migratory RPE cells that may
be a sign of advancing RPE damage and disintegration (Curcio et al.,
2017).

GA growth. Once a lesion of GA has developed, AI offers the op-
portunity to predict the direction and speed of future growth. Niu et al.
proposed an AI model based on 29 patients and a mean observation
period of 2.5 years (Niu et al., 2016). The model was able to foresee the
future growth of GA lesions with a high accuracy, although comparison
with a baseline (e.g. assuming linear, centrifugal GA growth at the es-
tablished growth rates) was not provided (Fig. 9). In this study, thin-
ning of the outer retinal layers and the presence of reticular pseudo-
drusen were among the most important markers considered by the
model. These early experimental results promise successful application
of AI in analyzing GA, although refinement and validation in larger
datasets should follow. Reliable AI models, particularly in the context of
GA, will undoubtedly provide valuable support in counselling patients
and in aiding the development of therapeutic interventions for GA.

4. Discussion

4.1. The potential of AI

The digital availability of information has already vastly trans-
formed the practice of medicine. Modern physicians use Google and
PubMed more frequently than text books to aid in diagnostic and
therapeutic decisions (Kluwer, 2011). This is obvious as the breadth of
medical knowledge and the speed of its development grow ex-
ponentially with the interval needed to double knowledge decreasing
from 3.5 years in 2010 to a predicted 0.2 years by 2020 (Densen, 2011).
Patients are getting older and are affected by more and more co-
morbidities. Diagnostic analyses offer enormous numbers of predictors
which have to be integrated into prognostic equations. It does not
surprise that most diagnostic tests in medicine come back negative and
misdiagnosis is common (Care et al., 2015). Leveraging dramatic ad-
vances in computational power, digital voxel matrixes underlying ret-
inal images become thousands of individual variables. Algorithms then
cluster voxels into layers and contours, reconstruct 3D features from a
2D representation and ultimately learn pathognomonic patterns and
disease categories. Such digital decision support is badly needed as even
the frequent grading of DR is a complex task and agreement between
clinicians certified for the task and manual, but standardized, reading
center gradings in DR only reached consistency in 75% (Scott et al.,
2008). Introduction of an automated algorithm for DR grading com-
pared with retinal specialist gradings achieved substantial improve-
ments in correct adjudication, including evident DR features such as
microaneurysms (Krause et al., 2018). More sophisticated but relevant
features such as photoreceptor disruption is not amenable to clinical
evaluation but can be identified with an accuracy, sensitivity and spe-
cificity of more than 90% using automated detection on volumetric
OCT (Wang et al., 2018). In metabolic disease including diabetes,
multiethnicity may play an important role requiring huge datasets for
validation and evaluation, e.g., 71,896 images/494,661 images only
accessible by deep learning systems, reading an AUC of 0.94 for re-
ferable and vision-threating DR (Ting et al., 2017). AI using central
telemedicine systems may also support poorly resourced services in
areas where human expertise is missing.

Other medical fields have already highlighted the benefit of AI in
their environment: CNN could detect tuberculosis in chest radiographs
(Lakhani and Sundaram, 2017), melanoma from skin photographs more
accurately than dermatologists (Esteva et al., 2017) and metastatic cells
in lymph node samples more precisely than pathologists (Liu et al.,
2017). Radiologists anticipate that the implementation of AI over the
next decade will greatly improve the quality, value and depth of radi-
ology's contribution to patient care and population health, and will
revolutionize radiologists' workflow, as stated in the Canadian Asso-
ciation of Radiologists white paper on AI in Radiology (Tang et al.,
2018). Retinology with its multimodal imaging modalities, high-re-
solution image quality, inexpensive and non-invasive approach should
pioneer in the role of AI in medicine as diagnostic imaging is a major
source of deep learning.

4.2. AI and personalized medicine

However, other specialties which appear less easily accessible to AI
such as genetic counselling claim a goal to use AI to aid in identifying
at-risk patients, generating differential diagnoses, improving efficiency
in medical history collection and providing educational support for
patients (Gordon et al., 2018) – a profile which may be copy-and-paste
transferred to a disease such as AMD in the field of retina. Not to
mention the approach of precision psychiatry in using machine learning
for evidence-based psychiatry tailored to individual patients, objec-
tively measurable endophenotypes allowing for early disease detection,
individualized treatment selection and dosage adjustment to reduce the
burden of disease – which are daily routine in medical retina (Bzdok
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and Meyer-Lindenberg, 2018). Personalized medicine is an urgent call
in a healthcare system which cannot afford existing large redundancies
together with a lack of recognition of individual conditions and needs.
However, patient profiles are vastly different and difficult to recognize,
even with a time-intensive physical examination, physician-doctor
communication and expensive serologic or even genetic tests. Large
initiatives have undertaken huge efforts to use genome-wide analysis of
disease progression in AMD with the goal of assisting in early identi-
fication of high-risk individuals (Yan et al., 2018). Yet, it is questionable
whether a genetic risk estimation will be as relevant as an individual
imaging assessment using AI for a detailed individual and time-sensitive
biomarker assessment which offers a signature profile in the conversion
from early to advanced AMD (Schmidt-Erfurth et al., 2018b). Perso-
nalized medicine comes with the dilemma of time constraints in busy
daily practices. Advances in electronic medical record analysis and
comprehensive presentation of relevant previous and present features
in particular have the potential to free the clinician to shift from dis-
puting documentation and data-entry tasks derived from multiple
sources, e.g., BCVA record, medication, fundus photography, angio-
graphy etc. to patient-focused activity. Proper interpretation and use of
computerized data will depend as much on wise doctors as any other
source of data has done in the past (Verghese et al., 2018). However,
with the ability of AI to automate, e.g., in servicing electronic medical
records, using speech recognition and image analysis, the physician will
be able to extract the relevant features with a mouse click freeing-up
more time for human-to-patient interactions, which will improve care
and allow physicians to record and accurately register more individual
phenotypes with added individual nuance (Halpern et al., 2016). Eric
Topol, the pioneer in digital medicine, refers to the digital revolution in
medicine as “the creative destruction of medicine” (Topol, 2011). He
also highlights the socioeconomic opportunity of AI-guided medicine in
his book “The patient will see you now: The future of medicine is in
your hands”. With the advent of patient-accessible automated scanners,
individuals can take advantage of screening procedures without the
need to wait for a doctor's appointment. Physicians can also spread
their knowledge across disciplines, as AI-based systems brings diag-
nostic expertise in retina into primary care in an interdisciplinary way.
The high resolution of retinal imaging in particular enables the physi-
cian to assess human health at an unprecedented level. The Google-
Project extracted highly personalized data such as sex, age, blood
pressure, HbA1c and smoking history from a single digital color pho-
tograph of the retina, far beyond ophthalmological relevance (Poplin
et al., 2018). This capability brings ophthalmology/retinology into the
focus of high-definition medicine as a dynamic assessment, manage-
ment and understanding of an individual's health over life-time. Stra-
tegies of high-definition medicine include defining a personal therapy
and establishing a continuously improving learning healthcare system
(Torkamani et al., 2017).

4.3. Challenges in AI-based retina

Data access and therefore big data sharing are quintessential issues
in machine/deep learning and neural networks are intrinsically “data
hungry”. The public availability of ImageNet in 2009 catalyzed AI and
is still the base of retina-based image analyses (Deng et al., 2009). Open
access to scientific data has become a prominent topic on the global
research agenda. While the rise of open access policies is fundamentally
changing the academic landscape, it is reigniting the conversation
around adequate policies to protect scientific intellectual property. In
2015, Hahnel referred to “the open academic tidal wave” describing the
transition from open access to scholarly papers of publicly funded re-
search, to access of all digital outputs, to mandated and enforced access
to all digital outputs of publicly funded research (Hahnel, 2015)
(Fig. 19).

Open access to research data, which largely includes images in
retinal research, is made mandatory by important funding agencies

such as the National Eye Institute (NEI) and the Wellcome Trust, and
has the potential to bring retinal research to prolific horizons. The UK
Biobank initiative is an excellent example of open access retinal ima-
ging. This biobank aggregated self-reported disease questionnaires and
physical and eye examinations, including macular SD-OCT scans, from
about 67,000 individuals aged 40–69 years for systematic analysis of
macular thickness and associations with RPE measurements (Keane
et al., 2016; Ko et al., 2017; Patel et al., 2016).

Independent of the value of open data access for research, medical
data is fundamentally and legally different. The NHS's initiative to share
identifiable clinical data of 1.6 million patients with Google/Deep mind
(with the goal to develop an app to monitor patients at risk of acute
kidney injury) has raised substantial questions about data con-
fidentiality, particularly as this process was not made public until in-
vestigative journalism actively interfered (The Guardian, 2017). The
fear is obviously that algorithms based on confidential NHS records will
seed an entirely new industry in AI-based technology. Questions re-
garding privacy protection are particularly sensitive in retinal imaging
as anonymization is not completely achievable due to the individual
nature of the retinal vasculature which provides a fingerprint-like in-
dividual feature. The fact is, it is not possible to completely anonymize
any medical images, whether they are MRIs of the brain or ophthalmic
images. For this reason, data protection experts and ethical bodies now
refer to “de-identification” or “de-personalization” of medical images.
They also require that, given the challenges in complete anonymization
of any images, that appropriate safe guards be put in place to further
reduce the theoretical risks of re-identification. In addition, questions
such as data ownership, rights to intellectual property and big profits
created from public funding become more and more virulent (Beam and
Kohane, 2018). Requirements of data protection and pseudonymization
for safe data transmission and redundant privacy-compliant storage
with disaster recovery plans are hugely expensive as imaging datasets
are big data on a per patient level. Cyberattacks may jeopardize auto-
mated screening tools with so-called adversarial samples against deep
learning systems which are otherwise invisible to the human expert.
The healthcare economy and its multiple incentives make it particularly
sensitive to fraud. The challenge of incorporating ethics into data
technologies is formidable. This is in part because it requires over-
coming a century-long ethos of data science: develop first, question
later; datafication first, regulation afterwards (Koopman, 2018). This
criticism implies that innovative research often proceeds proactively
with presenting paradigm-shifting discoveries, while a comprehensive
evaluation of all possible side-effects and limitations follows subse-
quently when the community has the opportunity to embrace the
change on a larger scale and a real-world setting. Particularly novel
means of big data analyses have to cope with this phenomenon as
highlighted in an exemplary manner by the Google/NHS project which
has initiated intensive legal ramifications subsequently.

The other “elephant in the room” is the black-box phenomenon. In
deep learning, it is challenging to understand how exactly a neural
network reaches a particular decision, or to identify which exact fea-
tures it utilizes (see Section 2.7). As AI already outperformed human
expertise, how can the results of AI-based algorithms be properly un-
derstood by clinicians and researchers? How can we ensure the relia-
bility of algorithms, if we cannot understand how they operate? Po-
tential solutions to this problem are multi-step algorithms that first
detect certain clinically known features (using deep learning) and then
predict or classify based on these features. However, the value of an
end-to-end approach with the potential for a higher accuracy and the
discovery of new markers is obviously lost in this trade-off.

Another limitation represents the possibility of inherent bias in AI
that has to be recognized. The representative value has to be evaluated.
In many cases, the analysis of big data goes beyond direct human in-
telligence (Balthazar et al., 2018). Algorithms learn from data compiled
in current clinical practice. Therefore, AI-based algorithms in anti-
VEGF trails strongly rely on the nature study protocols and behavioral
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procedures including mandatory retreatments whenever intra- or sub-
retinal fluid becomes apparent, potentially leading to overtreatment
(Schmidt-Erfurth et al., 2018a). Despite the golden rule in anti-VEGF
therapy to rigorously eliminate fluid from the neurosensory retina, the
correlation between retinal fluid and retinal function was found to
extremely low at an R2 of 0.23. AI-based outcomes necessarily require
comprehensive intellectual validation based on clinical expertise but
may also open the horizon for novel insight into the pathophysiology of
retinal disease. In real-world data analyses, algorithms that learn from
human decisions are particularly likely to reiterate human errors
(Obermeyer and Lee, 2017). Although machine-learning methods are
especially suited to making predictions based on existing data, precise
predictions about the distant future are often fundamentally inaccurate.
The rise and fall of Google Flu is a reminder of the complexity of
forecasting as is the insufficiency of treat-and-extend data. With fast
changing diagnostic and therapeutic paradigms, previous data sets have
a short survival and the relevance of clinical data decays with an ef-
fective “half-life” of about 4 months (Chen et al., 2017). Although
predictive algorithms are unable to provide absolute medical certainty,
they may strongly improve allocations of stressed healthcare resources
by helping to plan large-scale patient care, comparing the efficiency of
therapeutic substances and suggesting sound treatment indications,
which is a future must in the pharmacological era of retinal therapy
(Chen and Asch, 2017). Retinologists are called to reorganize their
specialty according to their patients' needs. They need to defend their
field against destructive reimbursement policies which lead to miser-
able outcomes in the real world (LUMINOUS) and to navigate soundly
between the goals of improving health and generating profit. Modern
intelligent tools can support this task. If understood in depth and ap-
plied with expertise, AI offers the unique opportunity to establish a
collective medical mind combining published research, big data ana-
lysis and individual expertise with the tenets of professional ethics.

The black-box phenomena is particularly intrinsic to daily routine as
digital imaging focuses on subclinical biomarkers such as hyperre-
flective foci, deep capillary plexus and other features beyond clinically
visible correlates. Hence, AI-based detection and integration is not an
alternative but a necessity. A collaborative approach is the only path
towards meaningful insight by big data analysis which may strengthen
the entire field substantially and raise overall quality.

Finally, it is important to point out that most AI-based applications
in medicine are still in the translational stage and have not yet de-
monstrated their benefit in clinical trials. However, the authors believe

that it is merely a matter of time until this hurdle will be successfully
taken.

From a visionary perspective, AI in retina may appear rather “or-
ganic” as human visual perception works in a similar way to feature
recognition by AI: an image is projected to the photoreceptors of the
retina, representing the first neuronal layer, which feeds it forward to
neurons in subsequent neurosensory layers, which then forward the
visual signals to multiple connected neuronal networks in the visual
cortex and associated areas in the brain that process visual stimuli si-
multaneously and in real time. Human visual perception is also estab-
lished by learning and combining images using labels, rather like self-
teaching systems in machine learning. The challenge is now to integrate
such a highly developed system into our profession.
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